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Abstract

Electrical Resisivity Tomography (ERT) is a common tool to study land-10

slides morphology and dynamics. Landslides dynamics is strongly related to clay

content, pore pressure and permeability distribution. Standard Direct Current

(DC) resistivity method often fails at providing information about permeabili-

ties because materials with low resistivities can both exhibits high or low per-

meability especially according to their clay content and the relative importance15

of surface conduction compared to electrolytic conduction. Induced polariza-

tion (IP) have proven to be a useful complementary tool to assess petrophysical

properties of the rocks. Up to now, it has been rarely used in landslides studies

and not yet in landslides monitoring. This study aims at demonstrating the use-

fulness and added value of induced polarization as a complement to traditional20

ERT measurements in the case of landslide characterization and monitoring.

We realized 3 time domain IP (TDIP) surveys at three different time steps on

an active landslide in the French Alps. A time-lapse inversion of the resistivity

and chargeability values is realized. The spectral IP parameters are extracted

through a Debye Decomposition. The results are compared to surface displace-25

ments obtained by processing optical images. We demonstrated that the use
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of TDIP is of crucial importance to estimate the extend of unstable volumes

within the landslide. The results are in very good agreement with the data

provided by the piezometers and inclinometers. The use of a general law to link

IP variables and permeability enables to estimate the spatial distribution of the30

permeability within the landslide and its evolution through the seasons.
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Landslides, electrical tomography, induced polarization, permeability, surface

displacement, risk assessment

1. Introduction35

Nowadays, while climate is changing, society and land-use are evolving and

extending, landslides occurences are increasing. Understanding landslide pro-

cesses and the risk associated is becoming a major economic and political stake,

especially in moutainy areas (Malet et al., 2007; Marescot et al., 2008; Gance

et al., 2016; Lajaunie et al., 2019; Scoppettuolo et al., 2020; Desrues et al.,40

2022). Landslide deformation monitoring is one type of approach to evaluate

slope stability and set up early warning techniques. It implies surface deforma-

tion monitoring, satellite or image based approaches and/or deformation mod-

elisation approaches (Stumpf et al., 2017; Lacroix et al., 2018; Desrues et al.,

2019, 2022; Cascini et al., 2022).45

Full landslides characterization consists in evaluating the potential unstable

volumes implicated and defining the triggering processes. Changes in water con-

tent of the subsurface material, the associated pore water pressure and matrix

suction variations are the main involved triggering parameters underlying the

strong influence of heavy rainfalls and sudden snow melts in landslides dynamics50

(Malet et al., 2005; Eberhardt et al., 2005; Guzzetti et al., 2008; Lu et al., 2010;

Ponziani et al., 2012; Yao et al., 2019). Geophysical approaches, and especially

electrical methods due to their sensitivity to water content, have proven to be
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efficient for structure characterization, soil moisture content characterization

and evolution through time (Marescot et al., 2008; Hibert et al., 2012; Wilkin-55

son et al., 2016; Gance et al., 2016; Hellman et al., 2017; Uhlemann et al., 2017;

Lajaunie et al., 2019; Revil et al., 2020; Holmes et al., 2020). If moisture content

is a main factor controlling landslide stability assement, the distribution of clay-

ish areas acting as impermeable barriers is also a key to understand landslides

dynamics. Recently Uhlemann et al. (2017); Chambers et al. (2014) proposed60

a moisture content evaluation based on the measure of the electrical resistivity

and the consideration of surface conduction based on laboratory calibration of

a Waxman and Smith type relationship.

Considering the importance of clay content estimation and distribution in

understanding landslides, it turns out logical to introduce induced polarization65

(IP) measurements to classical geoelectrical surveys. IP measurements can be

performed both in frequency (FDIP) and in time (TDIP) domains. They can

both lead to information about the amplitude of the polarization and the re-

laxation time. The IP spectral content hold information about petrophysical

and hydrological carateristics such as the hydraulic conductivity (Binley and70

Kemna, 2005; Tong et al., 2006a; Titov et al., 2010; Kemna et al., 2012) or the

clay content (Slater and Lesmes, 2002; Slater and Glaser, 2003). Up to now,

very few studies present the results of field induced polarization on landslides

(Marescot et al., 2008; Revil et al., 2020; Orozco et al., 2022). Revil et al. (2020)

applied petrophysical models in order to estimate water content, cation exchange75

capacity and permeability from laboratory calibration to a clayey landside. Sim-

ilarly to this study, most of the field IP and almost all the field IP realized on

landslides consider only the chargeability parameter depriving themselves of the

spectral information. Recently, Orozco et al. (2022) has performed both TDIP

and FDIP on a landslide and has evidenced that hydraulic properties estimated80
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from spectral IP content where of fundamuntal importance for landslide char-

acterization. Information about the spectral content of the IP phenomenon are

usually retrieved from FDIP measurements due to their higher accuracy and

larger acquisition bandwidth. Such acquistions besides being time greedy, have

a lower penetration depth on the field (Maurya et al., 2018; Martin et al., 2020).85

In the past 10 years, the use of TDIP to retrieve IP spectral information has

been developing. Generally, the spectral properties are extracted via a Cole

Cole, a Pelton or a maximum phase angle model inversion (Gazoty et al., 2012;

Fiandaca et al., 2013; Doetsch et al., 2015; Fiandaca et al., 2018; Lévy et al.,

2019a; Martin et al., 2020; Orozco et al., 2022). The latter imply some hypoth-90

esis as for the shape of the phase spectra. To avoid such constraints, TDIP

decays can also be fitted via a Debye Decomposition (DD) (Tarasov and Titov,

2007; Nordsiek and Weller, 2008; Martin et al., 2020, 2021). To our knowledge

the DD approach has never been applied on landslides, and the spectral content

evolution through time in landslides has not yet been investigated.95

In this paper, we propose a time-lapse ERT and IP monitoring of a landslide

situated in the French Alps. The full decay of the IP curve will be considered in

order to get information about the relaxation times via a Debye Decomposition.

We propose to associate the results to the surface deformation obtained by100

photogrammetric monitoring. We show that the IP information is important as

an added value for landslides geometry characterization, time-lapse monitoring,

dynamic processes understanding and unstable volumes quantification.

2. Geological settings and major stakes

The Montgombert landslide (MGL) is located in the French part of the alps105

in the gorges of the Arly river (Savoie, France) near the city of Ugine (Figure 1).
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The landslide is perched 100 m above the road RD1212. This road is an essen-

tial trunk road as it deserves some major ski resorts in the area and link cities

in the pays du Mont Blanc to bigger cities. The part of the RD1212 crossing

the gorges of the Arly has been regularly exposed to landslides, rock falls and110

flooding generating regular traffic interruptions and road works. All the Eastern

part of the gorges de l’Arly are prone to landslides and are composed of hercy-

nian metamorphic micaschists from the Serie Satinée. The MGL originates in

the generalized toppling failure of the micaschists and their transformation into

clayey micaschists rock slides. Further on the East, the micaschists are covered115

by mesozoic rocks and glacial sediments on the Plateau des Saisies. The latter

forms significant local aquifers that generate permanent water circulation into

the massif. Water is drained by the surface hydrological network and also diffu-

sively through the rock slides. The MGL has been particularly active since the

spring 2016 and strongly monitored eversince. Piezometers and inclinometers120

have been installed. Surface displacements are monitored thanks to automatic

theodolithe and optical image monitoring installations (Desrues et al., 2019).

The slope is the order of 35◦. Geophysical studies have been performed in 2016

and 2017. The most active part of the landslide is about 100 m width and 200 m

long and its depth is evaluated to 15 to 30 m. The piezometric level at the top125

of the active part of the landslide is 18 to 16 m below the topographic surface

in spring and 30 to 31 m at the end of the summer. The surface displacements

show that movements are more important in the lower part of the landslide and

can reach 25 m within a year. The inclinometer exhibits 3 main sliding sur-

faces at 8, 15 and 30 m depth, the latter being consistent with the water level130

observed in the piezometer. The landslide is water sensitive and is particularly

active in the spring following heavy rains and/or fast snow melting. The par-

ticularly rainy winter 2017-2018 generated a sudden reactivation of the MGL.
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Open fractures up to 2 m wide and 10 m long have been produced, 7000 m3 of

rock debris have reached the road and several hundreds of thousands cubic me-135

ters of material have moved from 50 cm to 15 m at the surface of the landslide

and stayed in equilibrium on the slope. As a consequence, the administration of

the French county of Savoie decided to finance more geological, hydrogeological

and geophysical studies to better understand the structure of the landslide and

the mecanisms driving its instabilities.140

3. Data acquisition and pre-processing

3.1. Photogrammetric data

A system of topographic monitoring is in place on the studied site (Figure

1). We placed 26 topographic targets in 2016 and surveyed their positions with

an automatic theodolithe. Following technical issues and some targets loss, the145

installation had to be reset and has been operational from February 2021 to

November 2021 and further removed. We installed 2 digital single-lens reflex

cameras (Canon 100D) of 18 MPix connected to a Paratronic LNS datalogger

and separated of 362 m on the northern opposite side (right bank) of the valley

enabling a full view of the most active part of the landslide. The cameras150

have been installed in May 2019 and are operating over since. The distance

between the camera and the landslide is 550 m, the equivalent size of one pixel

is 5 cm and the theoretical displacement detection limit is 0.5 cm. In order

to avoid problems due to shades, 3 pictures per day are taken at 11:00, 12:00

and 13:00 (UTM). The calibration of the cameras has been performed thanks155

to 10 georeferenced targets placed on the landslide and a high resolution Lidar

obtained at the moment of the installation of the cameras. We used the images

from the 18th of April 2021, the 16th of September 2021 and the 12th of April

2022. Each pair of images has been processed.
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3.2. Geoelectrical data160

We acquired 4 electrical ERT and IP profiles in the active part of the MGL. A

5 m spacing multiple gradient acquisition protocol with a double cable configu-

ration (2×32 stainless steel elecrodes) have been performed in order to maximize

signal/noise ratio and prevent electromagnetic coupling effects within the cables

(futher details about this acquisition procedure can be found in Dahlin et al.165

(2002); Lévy et al. (2019a)). We realized 3 campaigns in April 2021, September

2021 and May 2022. The studied area being particularly steep and unstable,

the electrodes have not been left in place from one campaign to the other. At

each campaign, the precise position of each electrode is taken with a real time

kinematic GPS (Leica GS07 high precision GNSS with a RTK connection) with170

a 5 cm accuracy. In April 2021, resistivity and induced polarization data were

acquired using an ABEM Terrameter SAS 4000. For IP data, 6 time windows

(100, 200, 400, 800, 1600, 3200 ms) were set with a time delay of 50 ms to make

sure no electromagnetic coupling is recorded on the early times, on-time and

off-time were equal and set to 8 s. To reduce the acquisition time in Septem-175

ber 2021 and May 2022, a Terrameter LS2 have been used in 100% duty cycle

(Olsson et al., 2015). The fullwaveform data enabled a first data quality check,

manual inspection and removal of noisy data (Martin et al., 2020). Injection

time was set to 8 s and 13 time windows have been recorded with a 50 ms

time delay (100, 100, 100, 100, 100, 100, 100, 100, 200, 400, 800, 1600, 3200180

ms). Unfortunaletly, the chargeability values are shifted from 50% duty cycle

to 100% duty cycle and we can not ensure the comparability of these data and

their decays between April 2021 and the further campaigns (Olsson et al., 2015).

This is why we will not further use the April 2021 chargeability data for TDIP

time-lapse inversion. A total of 1053, 996 and 977 resistivity and chargeability185

raw data have been obtained in April 2021, September 2021 and May 2022 re-
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spectively. We measured the stacking errors - or variation coefficient - in % over

at least 4 stacks. The median value and standard deviation value of these errors

are 0.72 and 1.55 % in April 2021, 0.89 and 0.17 % in September 2021 and 0.085

and 0.12 % in May 2022. The errors are less spread when using the LS2 which190

can be explained by a more recent manufacture and a better optimized internal

quality. The stacking errors in September are higher than those obtained in

May which results from the quality of the contact resistances (≈ 1000 Ohm

with a maximum of 1700 in September and ≈ 700 Ohm in May). Negative

resistivities, values with stacking errors superior to 2%, 1.2% and 1% for April195

2021, September 2021 and May 2022 as well as outliers values are removed from

the resistivity data set. Chargeability decays are checked and filtered such as

negative chargeabilities at first step, decays which do not fit an exponential

decay and non-monotonic decreasing curves are removed. A total of 1028, 895

and 969 resistivity data and 594, 747 and 905 chargeability decays are kept for200

futher inversion (April 2021, September 2021 and May 2022 respectively).

4. Methods

4.1. Electrical and induced polarization methods

Classical ERT measurements consist in injecting current through a pair of

electrodes and measuring the resulting voltage through a pair of receiving elec-205

trodes leading to a resistance value. However, the subsurface materials can

also act as capacitors, i.e. they can reversibly store electrical charges when an

external current is applied. This effect is also known as induced polarization ef-

fect or chargeability. Charges accumulation and depletion generate a secondary

electrical field. In time domain (TD), this lead to a voltage decay when the210

current is switched off. The characteristics of the decay curve are fundamentals

to define the IP effect not only in terms of magnitude but also in terms of slope
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and relaxation time (Gazoty et al., 2012; Martin et al., 2021). The overall con-

ductivity of soils (inverse of resistivity) is the result of three main effects : the

matrix conduction, which can be neglected if no metallic particles or electronic215

conductors are present, the electrolytic conduction, i.e. the conduction of the

charges within the fluid present in the pores, and the surface conduction. i.e.

conduction processes happening at the fluid/grain interface. In materials carac-

terized by fine grains like clays, surface conduction can not be neglected. When

no metallic particles are present the conductivity is a complex value that can220

be expressed as :

σ∗ = [σel + σ′s] + iσ′′s (1)

with σel the electrolytic conductivity and σs the surface conductivity, both

in S.m−1. Capacitive properties are related to the imaginary part of the surface

conductivity (Kemna et al., 2012). The material used for TDIP measurements is

the same as for standard ERT measurements. Practically, a sequence of pulses225

of constant current and opposite signs with or without pauses between them

(50% versus 100% duty cycles (Olsson et al., 2015; Madsen et al., 2017)) are

injected into the ground. Partial apparent chargeabilities are defined as (Slater

and Lesmes, 2002; Gazoty et al., 2012; Revil et al., 2020):

mi =
1

(ti+1 − ti)

∫ ti+1

ti

η(t)dt (2)

where η(t) = Vs(t)
VDC

in V/V is the ratio between the secondary potential230

measured during the off-time and the potential measured between the potential

electrodes just before the current is switched off and ti+1 and ti define the

beginning and ending of the window over which the signal is integrated. The

normalized chargeability is defined as mn = m
ρ0

, where m is the chargeability
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and ρ0 the measured DC resistivity. This variable is considered as analogical to235

the imaginary part of the conductivity, σ′′, in the FD (Slater and Lesmes, 2002;

Gurin et al., 2013) and can be considered as a proxy of surface conductivity in

sedimentary rocks (Slater and Lesmes, 2002; Revil et al., 2017).

4.2. Geoelectrical inversion including induced polarization data

The inversion of the electrical and TDIP data have been performed thanks240

to the open-source package pyGIMLI (Günther et al., 2006; Rücker et al., 2006,

2017). As a first step, the inversion of the resistivity data is performed us-

ing a Gauss-Newton minimization algorithm implemented on an irregular grid

(Günther et al., 2006; Rücker et al., 2006). A gaussian distribution of the error

estimate on the data is considered. The errors are defined as the sum of the245

measurement accuracy, resulting from the measurement of stacking errors (Tso

et al., 2017) and a fixed percentage of the measure (Günther et al., 2006). The

stopping criteria is based firstly on the χ2 criteria and then on the decrease of

the cost function. The model resolution is estimated via the coverage approach

developped in Günther et al. (2006). Considering the approach of Seigel (1959),250

the apparent chargeabilities are then inverted to get a chargeability model (Mar-

tin et al., 2020; Revil et al., 2020). One model per time gate is extracted and

a smoothing constrained is applied along the time axes to ensure the models

decays to be smooth (Martin et al., 2020). Once the inversion of the different

time gates is realized, decays can be further fitted.255

4.3. Time-lapse inversion methodology

To track the evolution and variations of resistivity and chargeability values

and infer the influence of the water content in the MGL, the ERT and IP ex-

periments are also conducted as a time-lapse experiment. The accessibility and

the stability of the studied area remain challenging. Some areas at the base of260
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the studied site became too unstable from one campaign to the other to ensure

a safe access implying some electrodes relocation. As a result, our method-

ology for the time-lapse inversion is similar to the methodology proposed by

Uhlemann et al. (2017). A very precise mesh is build on a 20 cm z-precision

Digital Elevation Model (DEM) and includes one node per electrode position265

all campaigns combined. The electrodes positions are updated for each time

step and a reference model is used to constrain the inversion. The same inver-

sion mesh is used for all the inversions as no siginificant topographic changes

compared to the grid size that may affect the resistivity model are observed

during our time study. Above 0◦C, conductivity and normalized chargeability270

increase linearly of about 2% per ◦C (Hayley et al., 2007; Revil et al., 2017;

Uhlemann et al., 2017; Holmes et al., 2020). In order to avoid misinterpretation

about water content variation, the influence of the seasonal temperature needs

to be removed. Brunet et al. (2010) proposed to model the temperature as a

function of depth, annual mean temperature, yearly amplitude variation of the275

air temperature, a caracteristic penetration depth, and a phase offset. This has

been successfully applied by Chambers et al. (2014); Uhlemann et al. (2017);

Holmes et al. (2020). We obtained the parameters of the temperature model

using field data retrieved from temperature sensors set at 40 and 85 cm depth

at the studied site and meteorological data recorded within a year. Resistivity280

values can then be corrected for the effect of the temperature considering :

ρcorrected = ρ (1 + α (Tref − Tmodel)) (3)

where ρcorrected is the resistivity corrected from the effect of the temperature,

ρ is the initial considered resistivity point, Tref is the reference temperature

and Tmodel is the estimated temperature at the time and depth of the resistivity

point. We set α for resistivity and normalized chargeability to 0.2 and 0.21285
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according to the values commonly used in the bibliography and obtained by

laboratory experiements (Uhlemann et al., 2017; Coperey et al., 2019; Holmes

et al., 2020).

4.4. Extract information from the decay curves through a Debye Decomposition

Classical inversion of TDIP used the DC resistivity and the integral charge-290

ability (the partial chargeability integrated over all the time gates) to obtain

resistivity and chargeability models (Oldenburg and Li, 1994; Revil et al., 2020).

However, no information about the spectral content can be extracted this way.

The Debye Decomposition (DD) approach has been used in frequency domain

by Nordsiek and Weller (2008) and in time domain by Tong et al. (2006a);295

Tarasov and Titov (2007); Martin et al. (2021). In this paper, we follow the

approach proposed by Tarasov and Titov (2007) and more recently by Martin

et al. (2021) in time domain. The decay curves are converted into an equivalent

sum of Debye models via a Relaxation Time Distribution (RTD). The relax-

ation times are logarithmly discretized with 200 steps in a predifined matrix300

from 10−3.5 et 103.5 s. The RMS and the χ2 values are extracted to ensure the

inversion validity. We also define the mean relaxation time τmean as Nordsiek

and Weller (2008) :

τmean = exp

(∑
k (mk.ln(τk))∑

kmk

)
(4)

4.5. Clustering

Data interpretation is often biased especially as for the quantification of305

what we consider as a significant variation. Recently in near surface geophysics

applications, unsupervised classification has proven to be an efficient tool to de-

fine groups of common geophysical caracteristics (Ronczka et al., 2017; Whiteley

et al., 2021; Carrier et al., 2022) or to identify time-lapse variations (Xu et al.,
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2017; Delforge et al., 2021). We apply unsupervised classification to the vari-310

ations of the different geophysical properties in order to create groups areas

where geophysical properties evolve through time in a similar manner. For

our specific case, we choose to apply a Gaussian Mixture Model (GMM) for

its ability to identify convex clusters in the parameter space and for its speed

and easiness of implementation via the scikit-learn python package (Pedregosa315

et al., 2011). The GMM clustering algorithm is performed to build consistent

groups of [resistivity-normalized chargeability-relaxation time] variations. The

data space consists of the 70% of data with the highest coverage values, we fixed

the number of groups to 5 considering the geological context, the rationale and

a BIC (Bayesian information criterion) approach.320

4.6. Surface displacements from ground based images (TSM)

Thanks to the recent development of high resolution sensors, the use of

optical cameras to track surface displacements via image correlations appears

to be relevant for landslide monitoring (Gance et al., 2014; Travelletti et al.,

2012). These methods have the advantage of being low cost and providing325

information within the whole image and not at specific points. We used the

TSM (Tracing Surface Motion) processing toolbox developped by Desrues et al.

(2019) and the VSC (Variable Sequential Correlation) methodology to compute

the deformation fields. It consists of a 6 steps methodology based on the use of

a time serie of images in a JPG format originated from a monoscopic camera.330

The 6 steps are detailled in Desrues et al. (2019) and include evaluating the

sensor orientation, selecting images, correcting the sensor mouvements, cross-

correlating images to get ground motion, extracting the meaninful patterns and

applying a geometrical correction.
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5. Results335

Time-lapse ERT and IP inversion exhibits satisfying results, RMS ranges

from 4.6 to 8.5% and 9.6 to 12.3% for ERT and IP inversion respectively. The

resulting cross-plots are shown on figure 2. The residuals for IP inversion are

more spread than for ERT inversion which is consistent with the fact that IP

data are more affected by noise than ERT data. Fot the DD, the mean and340

median values of the χ2 are 12 and 5 for the September 2021 data set and 5 and

3 for the May 2022 data set respectively which is satisfying. In the framework

of the MGL, we do not expect any metallic particles within the materials and

we consider that the normalized chargeability is a proxy of surface conductivity

and gives information about the amount of fine particles (Mao et al., 2016).345

The resistivity models exhibit high resistivities in the first 5 m depth (> 4000

Ohm.m). Resistivity is gradually decreasing until 30 m depth to reach values

between 200 and 500 Ohm.m. Low values are reached quicker in the down-

stream part of the MGL (Figure 3, A), D), G)). Normalized chargeabilities

values range between 0.001 and 0.3 mS/m. Normalized chargeabilities are less350

than 0.01 mS/m in the first 5 m depth and then increases with depth to reach

0.3 mS/m in the downstream part of the landslide in May 2022 (Figure 3, B),

E), H)). Relaxation time constant model exhibits values in the order of 1 s in

the first 15 m depth. The values tend to decrease with depth in September 2021

and increase with depth in May 2022 in the downstream part of the landslide355

(Figure 3, F), I)). We extracted 3 main hydrogeological units (HU) on the ba-

sis of inclinometer data, piezometric measurements, resistivity and normalized

chargeability models (figure 3, C). The first one (HU 0, green) consists in the

first 5 meters depth of the landslide made up of very loose material, it exhibits

very high resistivities, low chargeabilities and variable relaxation time constants.360

Between 5 and 15 m depth, a second body (HU 1, grey) is defined where resis-
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tivities and chargeabilities are intermediate. This agrees with quite remobilized

materials, moderately altered micaschists. At depth more than 15 m, materi-

als with low resistivity and high chargeability are observed and constitute the

third body (HU 2, purple). The latter suggests material with important surface365

conductivities and agrees with less damaged micaschists. Resistivity variations

are represented along the corresponding surface displacements obtained via the

TSM method over the considered period of time (figure 4). The variations are

defined as
variable−variableref

variableref
. Normalized chargeability and mean relaxation

time variations are only considered between September 2021 and May 2022370

when acquisition parameters and acquisition material are comparable (Figures

5 and 6). The time lapse inversion observations are the following :

• Resistivity tends to globally decrease within the landslide between April

and September 2021. The surface displacements associated remains less

than 0.1 m (figure 4).375

• Between September 2021 and May 2022, the resistivity tends to globally

increase in the first 15 m depth and decreases beyond 15 m depth in the

downstream part of the landslide. The surface displacements associated

are in the order of 0.3-0.4 m in the center/center-east-downstream part of

the landslide. These results are in agreement with field observations which380

suggest that the landslide is more active in winter and spring (figure 4).

Normalized chargeability generally decreases between September and May

for depths more than 15 m (figure 5), the decrease being more important

in the center/center-east-downstream part of the landslide (up to 80%)

than in the uphill part (less than 20% and more often less than 10%). In385

the subsurface, it generally increases or stays rather stable in the upstream

part of the landslide. The mean relaxation time is relatively stable in the

uphill part of the landslide. In the downstream part, it slightly decreases
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at the outer rings but it exhibits a significant increase of more than 200%

in the center/center-east-downstream part of the landslide (figures 5 and390

6).

• Between April 2021 and May 2022, resistivity has increased in the center/-

center east-downstream part of the landslide. The surface displacements

associated are the order of 0.3-0.4 m in the eastern part of the landslide

and can reach 0.8 m in the center/center-east-downstream part of the395

landslide. Resistivity variations are globally less than 20 % in absolute

value (figure 4).

In the HU 1, resistivity and mean relaxation time tend to increase (from 0

to 20 % and 0 to 50 % respectively) and normalized chargeability tends to

decrease (10 to 50 %) between September 2021 and May 2022. Yearly resistivity400

variations remain quasi-nul. The variations observed in the HU 0 are more

chaotic. Hence, in the first 15 m of the landslide, the variations are season-

sensitive and variations from one year to the other remain quite small. The

HU 2 exhibits few variations in the upstream part of the landslide (less than 10

%) whereas a resistivity and normalized chargeability decrease (up to 25 and405

50 % respectively) and a strong mean relaxation time increase (more than 200

%) between September 2021 and May 2022 are observed in the downstream

part (figures 5 and 6). Between the end of the summer and the spring, the

piezometer level usually changes from about 30 m to 15 m, meaning that this

deeper geological layer of the landslide fills up with water during the winter410

and the spring and drains during the summer. In this hydrogeological unit

we observe seasonal variations but also a non-negligible permanent resistivity

variation in the center/center-east-downstream part. This suggests that some

water could be stored for a longer time at the downstream of the landslide.

To help the reading of the variations results, a GMM clustering is applied to415
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the variations of resistivity, normalized chargeability and mean relaxation time

(figure 5 D, E, F). Five groups are extracted, the groups 0 and 1 correspond

to groups where resistivity and normalized chargeability have decreased and

mean relaxation time has significantly increased between September 2021 and

May 2022. The group 2 exhibits low variations for the 3 variables, and the420

groups 3 and 4 a resistivity decrease, a normalized chargeability increase and

a decrease of the mean relaxation time. Groups 0 and 1 are situated directly

above the surface areas where surface displacements are the strongest between

September 2021 and May 2022. We suggest that the groups 3 and 4 correspond

to highly altered material very sensitive to seasonal variations and extreme425

events (fast snow melting, heavy rains) and represent 17500 m3. The groups 0

and 1 corresponds to materials subject to seasonal and permanent variations,

the latter controlling the overall large scale dynamics of the landslide. Groups

0 and 1 correspond to a volume of 6000 and 11000 m3 respectively.

6. Discussion430

The measured TDIP data appears to be of good quality and consistent from

one campaign to the other. The resulting normalized chargeabilities and mean

relaxation times and their variations are spatially consistent which suggests that

the results are thrustworthy. However, we recorded field decay curves only on

a limited time range (0.05 to 8 s). It implies a known information loss at early435

times (i.e. highest frequencies) and later times (i.e. lowest frequencies). Even if

some useful information did come out from the time range used here, we suggest

that more information about the spectral content of the IP response could be

extracted with the use of a more elaborated post-processing technique as the

one describe by Olsson et al. (2016). This work has not been performed here and440

could be the subject of the further developement of a freely available module. It
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has been revealed that the pulse length influences the magnitude and the shape

of the decay curves (Mao et al., 2016; Olsson et al., 2019), so we choose to work

with a fixed pulse length. We did not study the influence of changing the pulse

length on our data mainly because of time issues. Considering these limitations,445

we interpretated the RTD and extracted information (mean relaxation time)

carefully with full knowledge and only qualitatively.

The nature and origin of resistivity seasonal variations within landslides are

strongly site and geology dependent (Supper et al., 2014; Gance et al., 2016;

Palis et al., 2017b,a; Uhlemann et al., 2017; Holmes et al., 2020). What’s more,450

it appears that the resistivity variations observed in clayey landslides are quite

tenuous, generally less than 10% (Gance et al., 2016). Between September and

May at the MGL, we observed either a resistivity increase or decrease whether

we consider surface or deep landslide material respectively. We assume from

field observations and piezometric levels that the water saturation increases455

from summer to winter within the landslide even if we can not quantify it

precisely. To illustrate and better understand the resistivity variations through

the seasons in the different parts of the MGL, we computed the theoretical

evolution of the total conductivity as a function of water saturation at different

water conductivities (i.e. different salinities) for a typical clay/silt material460

taking surface conductivity into account following Revil et al. (2020) model.

The figure 7 presents the evolution of bulk conductivity with saturation for

pore filled of snow melt water ( 0.2 mS/m), rain water (2 mS/m) or ground

water (about 20 mS/m with almost no seasonal variations, publicly available

water quality measurements for the different sources in the Arly valley). It465

illustrates the fact that when water saturation increases within the landslide

during winter and spring, the conductivity can decrease within the subsurface

material due to the very low conductivity of the brought fluids (green arrow on
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the figure 7) wheareas, meanwhile, it can increase in the deeper parts of the

landslide due to an increase of water content of constant medium salinity.470

The relation between normalized chargeability and saturation or relaxation

time and saturation is strongly material dependant. As a consequence, the po-

larization models inferred to explain the results are not universal (Titov et al.,

2004; Kemna et al., 2005; Binley et al., 2005; Ghorbani et al., 2009; Revil, 2012;

Breede et al., 2012; Okay et al., 2013; Abdulsamad et al., 2017; Zhang et al.,475

2019; Martin et al., 2022). In our case, the total chargeability of our mixture of

damaged/crushed micaschists and silts never exceed 40 mV/V and no metallic

particles are observed which suggests that our media might not act as pure clay

neither like material mixed with metallic particles. Its behaviour can then be

compared to the one in sands and/or mixtures of sand and clay. The polariza-480

tion mechanisms can then be explained by a combination of the short narrow

pore model (Titov et al., 2004) and a possible rearrangement of clay particles in

the pore space (Breede et al., 2012). In this type of medium, the relaxation time

constant increases with saturation and normalized chargeability increases and

then decreases after reaching a certain saturation threshold. Salinity may also485

affect polarization mecanisms (Revil, 2012; Lévy et al., 2019b; Martin et al.,

2022), its influence also strongly depends on the dominant polarization and

conduction mecanisms. Experiments realized on sands, sandstones and clay

agreed on the fact that polarization tend to increase with salinity until reaching

a threshold and decrease at high salinities (Revil and Skold, 2011; Weller and490

Slater, 2012; Weller et al., 2013; Hördt et al., 2016; Mendieta et al., 2021). In

the HU 0 (surface unit), the normalized chargeability tend to globally increase

between September 2021 and May 2022 in parallel to a salinity decrease and

a saturation increase from a very low starting saturation. The previous exper-

iments would expect a normalized chargeability increase with saturation and495
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a decrease with salinity. As a consequence, we assume here that the satura-

tion effect is dominant on the observed response. In the HU 1, the normalized

chargeability decreases when the soil get saturated with low conductivity fluids.

This could be the result of the combined influence of water saturation increase

from a medium to high starting saturation and a salinity decrease. In the HU 2,500

we assumed the salinity remains constant (on the basis of the measured salinities

in the sources around) so the observed decrease of normalized chargeability and

the increase of relaxation times highlight the increase in water saturation. Con-

sidering all the previous observations, we infer that the main sources of feeding

water in the subsurface units (HUs 0 and 1) are the rain and snow melt events505

whereas in the HU 2 (deeper unit) the water circulating within the massif is the

main source of additional fluids.

IP measurements are related to the surface area of the pore network as

a consequence they are related to the pore size and can help predicting the

permeability (Börner et al., 1996; Slater, 2007; Revil, 2012; Weller et al., 2015).

Recently, several studies proposed the used of laboratory calibrated relationships

between permeability and IP parameters to estimate the permeability at the

field scale (Fiandaca et al., 2018; Maurya et al., 2018; Revil et al., 2020). In

all the studies, the estimation of the permeability implies to consider some

fixed parameters (like porosity or water conductivity) and/or some assumption

about petrophysical models. Some studies also proposed to link the permeability

with the relaxation time but the relationships appear to be strongly dependant

of the geology (Binley et al., 2005; Tong et al., 2006b; Zisser et al., 2010).

Considering these limitations, we decided to apply the relationship proposed by

Weller et al. (2015) and applied on the field by Orozco et al. (2022) to infer

an order of magnitude of the permeability and its evolution through time using

the normalized chargeability as a proxy of the imaginary conductivity in order
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to avoid formulation implying the use of the formation factor which we can not

properly spatially define in the case of MGL. Hydraulic conductivity is then

defined as :

K =
g.dw
µ

3.47.10−16σ1.11
DC

σ′′2.41
(5)

where g is the gravitational constant, dw and µ are groundwater density and

dynamic viscosity in kg.m−3 and kg.m−1s−1 respectively. The relationship

between the normalized chargeability and the quadrature conductivity is related510

to the number of decades of the frequency range considered such as Mn ≈ ασ′′

with α ≈ 2
π ln(A), where A = 10k, k being the number of decades between

minimum and maximum acquisition frequencies. In our case α ≈ 4. Hydraulic

conductivity decreases from 10−5 m/s in the subsurface of the MGL to 10−8

m/s at 30 m depth within the landslide (Figure 9). After heavy rains or quick515

snow melt episodes resurgences appear within a few days at the base of the

landslide, suggesting that the loose surface material are permeable. Considering

a 5 m depth layer, the vertical hydraulic conductivity would be the order of

10−5 m/s. The saturation and the resulting pore pressure increase of these

loose subsurface materials generates rock flows. These rock flows happened to520

be almost permanent during the rainy season. Figure 8 represents the rain and

cumulative rain measured at the site along with the surface displacements during

the year 2021. The cross-correlation between the signals exhibits a maximum

at a lag of 25 to 30 days for the targets 4 to 15 situated in the active part of

the landslide. Considering a 15 m depth sliding surface, the resulting vertical525

hydraulic conductivity would be the order of 10−7 m/s. We underline the fact

that the orders of magnitude of hydraulic conductivity estimated from the field

observations are consistent and validate the estimation made from geophysical

data.

The MGL results from the toppling failure of the sub-vertical micaschists.530
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The latter are strongly foliated rocks composed of sheets of phyllosilicates. In

such materials, hydraulic conductivity is strongly dependant on the direction

and so is polarization (Kelly and Reiter, 1984; Cosenza et al., 2007; Börner

et al., 2018; Abdulsamad et al., 2019). In the case of the MGL, the horizontal

bending of the micaschists generated by the toppling failure would generate low535

vertical hydraulic condctivites in the 15 to 30 m depth unit. But this same layer

could be more permeable in the opposite direction which would allow the fluids

from within the massif to circulate. This layer (15 to 30 m depth) is acting as

an aquifer and undergo seasonnal water table variations (Figure 10). During

winter and spring water infiltrates from the upper massif and gather in this540

layer at the downstream of the landslide. As a consequence, the pore pressure

increases and the available space for electrical charges conduction widens which

lead to a decrease of normalized chargeability and resistivity, an increase in

mean relaxation time and an increase in permeability. At this point, general

mass mouvements of the landslide appear. In winter and spring, when HU 2545

is pressurized the units above are more prone to destabilization and respond

quickly to rain and snow melt events. We suggest that, the observed surface

displacements results from the combination of rain/snow melt infiltration and

underground water accumulation at depth.

7. Conclusion550

This paper presents the results of the first ERT and TDIP time-lapse inver-

sion performed on an active landslide. A methodology developped to extract

the spectral information from IP data through a DD has been applied in order

to extract as many information as possible from the TDIP data. The resistivity

variations are quite small within the landslide and are not sufficient to extract555

significant information about the unstable volumes. It appears that IP data are
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decisive for the estimation of these volumes. The results of the time-lapse ERT

and TDIP are very well correlated with the surface displacements obtained via

the TSM method. The use of a non-supervisied classification method enables

to build groups on the basis of the temporal evolution of the variables without560

formulating any hypothetis about the physical mecanisms or using petrophysi-

cal models. The time-lapse inversion of the geophysical data and the clustering

enables us to discriminate between weather sensitive subsurface volume with

potentially fast reaction times and deeper volume affected by seasonal water

level variation but also exhibiting permanent variations. The first represents at565

least 17500 m3 of materials and the latter situated above the highest surface dis-

placements represents a total of 17000 m3 potentially unstable materials. These

results are critical for the establishement and sizing of security systems nearby

the landslides. TDIP data have the potential to provide additional information

about the water content and the geometry of fluid flow circulations within land-570

slides as long as we understand how the considered variables evolves with water

content and/or salinity. Hence, TDIP appears to be a very promising tool in

landslide characterization and dynamics assessment. Note that, the possibilities

could be enhanced by the improvement of the data processing methodology and

the use of complementary geophysical data such as refraction seismic data. This575

paper did not focus on the theory of the IP, neither on the establishement of

a petrophysical model for the studied site. In order to better understand the

physical processes at stake, especially the polarization mecanisms at work from

a polarization theory point of view, more laboratory data and study would be

needed.580
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Figure 1: Spatial location of the studied area. The spatial extend of the most active part
of the landslide is represented by red lines. The location of the geophysical surveys (blue
lines), inclinometers-piezometer (blue points) and theodolithe targets (pink points) are also
represented.
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Figure 2: Cross-plots obtained from the ERT and IP time-lapse inversion. The color scales
with the relative residuals.
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Figure 4: Relative resistivity variations (A, C, E) and their corresponding surface displace-
ment obtained via TSM methodology (B, D, F). Relative variations are expressed in % and
displacements in meters.
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Figure 5: Relative resistivity (A), normalized chargeability (B), mean relaxation time (C)
variations between September 2021 and May 2022. The results of the clustering applied on
relative variations and its confrontation to surface displacements is presented on pannels D,

E and F. The relative variations are defined as
variable−variableref

variableref
, where september 2021 is

used as reference.
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Figure 6: Resistivity (rho in Ohm.m), normalized chargeability (Mn in mS/m) and mean
relaxation times (Tau in s) at the three intersections between PP04 and PP01 (A), PP02
(C) and PP03 (E) respectively from top to bottom of the landslide, location on figure 3.
Relative resistivity, normalized chargeability and mean relaxation time variations at the three
intersections between PP04 and PP01 (B), PP02 (D) and PP03 (F) respectively from top

to bottom of the landslide (relative variations are defined as
variable−variableref

variableref
and have

therefore no units). Please not that relative variations scale is different for B pannel compared
to D and F to ensure readibility. The inclinometer measured displacements in mm are shown
in grey in the background. The letters A, S and M in the captions stand for April 2021,
September 2021 and May 2022. The green, gray and purple backgrounds correspond to
the three main hydrogeological units within the landslide based on the interpretation of the
inclinometer, piezometric and geophysical data.
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Figure 7: Theoretical influence of water saturation on total, hydraulic and surface conduc-
tivity for different water conductivities for a typical material made of silt or clay silt. Red
lines represent the total (bulk) DC conductivity (σT ), green lines represent the electrolytic
conductivity (σH) and black line represents surface conductivity (σs). σw stands for water
conductivity. Green and purple arrows represent the possible evolution at the surface and
at 20 m depth within the MGL from the end of the summer to the spring. We consider the
total DC conductivity as : σT = σH + σs = θmσw + θm−1ρg (B − λ)CEC, where θ is the
volumetric water content, m the saturation exponent further set to 2, ρg the grain density
(kg.m−3), B and λ the apparent mobility of counterions for surface conduction and polar-
ization respectively and set to 3.1 × 10−9 and 3 × 10−10 m2s−1V −1 and CEC the cation
exchange capacity in meq/100g further set to 20 (Revil et al., 2020).
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Figure 8: Surface displacements measured from February to November 2021 using an auto-
mated theodolithe. Black curves represent rain (thin black line) and cumulated rain (bold
black line) in mm. Orange points represent the shearing measured at −15 m at the incli-
nometer I1 ahead of the upper end of PP04 profile in mm.
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Figure 9: Permeability models for September 2021 (A), May (2022) and their ratio (C) ex-
tracted from Weller et al. (2015) relationship.
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Figure 10: Simplified cross-section of the MGL landslide along the PP04 profile showing
subsurface hydrogeological fluid dynamics through the seasons (A) December to May B) June
to November). The three main bodies (green, grey, purple) are the three main hydrogeological
bodies identified in the paragraph 5. The damage degree of the micaschist is increasing with
depth. Toppling is beginning at the interface between the bedrock and the purple body and
damage progessively increases toward the surface in the two other units. Red dashed lines
represent the landslide surfaces inferred from inclinometer data and geophysical data. The
purple body acts as a semi-permeable aquifer unit and piezometric surface varies within this
body. Soil moisture accumulation is possible at the bottom of the landslide. Red triangles
represent open cracks actif as permeable barriers.
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