Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf. Vincent C.& al. 2014

Référence bibliographique
VINCENT C., HARTER M., GILBERT A., BERTHIER E., SIX D. Future fluctuations of Mer de Glace, French Alps, assessed using a
parameterized model calibrated with past thickness changes. Annals of Glaciology 55(66).

Abstract: Simulations of glacier evolution are needed to assess future changes in the runoff regime of mountain catchments. A simplified parameterized model is applied here to simulate future thickness changes and glacier retreat of Mer de Glace, French Alps. A normalized thickness change function describing the spatial distribution of surface-elevation changes as a function of elevation has been determined. The model reveals that under present climatic conditions Mer de Glace will continue to shrink dramatically in the coming decades, retreating by 1200m between now and 2040. The method has certain limitations related to the uncertainties of the normalized function based on thickness change data. An error of 10% in the normalized function leads to uncertainties of 46%, 30% and 18% in Mer de Glace front, surface area and glacier-wide mass-balance changes respectively in 2040. Because the difference of the normalized function largely exceeds 10% from one glacier to another, even within a given glacier size class and elevation range, it would be very risky to extrapolate the normalized function to unmeasured glaciers. Consequently, the method is applicable only on glaciers where past surface elevation changes are well constrained.

Mots-clés
 climate change, glacier fluctuations, glacier modelling, glaciological model experiments, mountain glaciers

Organismes / Contact
  • UJF – Grenoble I/CNRS, Laboratoire de Glaciologie et Ge´ophysique de l’Environnement, Grenoble, France
  • CNRS, Universite´ de Toulouse, LEGOS, Toulouse, France
  • Corresponding author: christian.vincent@ujf-grenoble.fr
 

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
  glacier thickness, ice flow velocity glacier retreat  

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
France Alps/ Mt Blanc massif La Mer de Glace   4300-1500 m  

(1) - Modifications des paramètres atmosphériques
Reconstitutions
Observations
 
Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)
As shown by Vincent (2002), it would be illusive to reconstruct cumulative mass balances in the past without topographic or photogrammetric maps. For the purpose of our study, the goal is not to test the ability of the model to reconstruct a mass balance, but rather to obtain realistic results. In this way, reconstructed and observed glaciological mass balances have been adjusted so that cumulative mass balances match volumetric mass balances from geodetic measurements (Vincent, 2002)
Comme montré par Vincent (2002), il serait vain de vouloir reconstruire les variations cumulatives passées du bilan de masse sans carte topographiques ou photogrammétriques. Dans le cadre de cette étude, le but n’est pas de tester la solidité du modèle dans le cadre de reconstruction des bilans de masse mais plutôt d’obtenir des résultats réalistes et plausibles. Dans cette optique, les bilans de masses observés et reconstruits ont été ajustés de telle sorte que le bilan de masse cumulatif concorde, sur le plan du volume, avec les mesures du bilan de masse géodésique (Vincent 2002).

(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 The cumulative mean specific balance of Mer de Glace between 1905 and 2008 is negative (loss of about 28.8mw.e.) but shows strong fluctuations. Note that the glacier net balance increased between 1960 and the beginning of the 1980s as elsewhere in the Alps (Huss, 2008b). After 1987, the mass balance was consistently negative except for 1995 (glaciological year 1994/95). In addition, the cumulative mass balance reveals that the loss of ice has been more pronounced since 2001 (Fig. 2a).

Between 1990 and 2012, ‘Tacul’ cross section (2200ma.s.l.) lost 58m in thickness while the thickness decreased by 77m at ‘Montenvers’ cross section (1700m a.s.l.). Over longer periods, the differences in thickness changes with elevation are even more pronounced

La moyenne cumulative spécifique au bilan de la Mer de Glace entre 1905 et 2008 est negative (perte d’environ 28.8me.e) mais montre néanmoins d’importantes fluctuations. A noter que le bilan de masse du glacier présente une augmentation, comme pour tous les autres glaciers des Alpes, entre 1960 et le début des années 80 (Huss, 2008b). Après 1987, mis à part pour 1995 (année glaciologique 1994/95), le bilan de masse a toujours été négatif. De plus, le bilan de masse cumulé montre que la perte de volume a été plus prononcée depuis 2001. Entre 1990 et 2012, la zone d’étude du Tacul (2200m) a perdu 58m d’épaisseur, pendant que celle du Montenvers (1700) perdait 77m. Sur des longues périodes d’étude, les différences dans les variations d’ épaisseur entre les différents sites d’étude sont encore plus prononcées.
Observations
 
Modélisations
 With the first scenario of the model(constant climatic conditions), the terminus retreats 1200m between 2012 and 2040. The second and third scenarios show a retreat of 1295m and 1375m respectively over the same period.
Dans le cadre du premier scenario du modèle (conditions climatiques identiques à celles d’aujourd’hui), on observe un retrait de la langue terminale du glacier de 1200m entre 2012 et 2040. Dans le cas des second et troisième scenarii, la langue terminale recule de respectivement 1295 et 1375m sur la même période d’étude.
Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 In summary, the uncertainty of 10% related to the normalized function causes an uncertainty of 46% and 30% on the snout fluctuations and the surface-area changes respectively. It also leads to an uncertainty of 18% on the glacier-wide mass-balance changes, and consequently on the glacier contribution to river runoff, in 2040.

The method should therefore be used with caution. It cannot be extrapolated to unmeasured glaciers for which the uncertainty of the parameterized function largely exceeds 10%, even for the same glacier size class within the same mountain range (Huss and others, 2010).

Pour conclure, l’incertitude de 10% de la function normalisée, est à lorigine d’une incertitude de respectivement 46% et 30% sur les variations de la langue terminale et de la zone de surface. Elle est également à l’origine d’une incertitude de 18% sur les variations du bilan de masse du glacier et, par conséquent, sur l’apport du glacier aux écoulement s de son torrent émissaire, en 2040. Etant donné que les différences dans la fonction normalisées sont bien supérieures à 10% d’un glacier à l’autre et ce , même si les glaciers ont une altitude et une taille identiques, il serait très risqué d’extrapoler la fonction à d’autres glaciers avec des paramètres différents.

(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations
 
Modélisations
 
Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 
 

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

Adhikari S and Huybrechts P (2009) Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Ann. Glaciol., 50(52), 27–40 (doi: 10.3189/172756409789624346)

Adhikari S and Marshall SJ (2013) Influence of high-order mechanics on simulation of glacier response to climate change: insights from Haig Glacier, Canadian Rocky Mountains. Cryos. Discuss., 7(2), 1707–1748 (doi: 10.5194/tcd-7-1707-2013)

Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS and Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382–386 (doi: 10.1126/science.1072497)

Bartholomaus TC, Anderson RS and Anderson SP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 33–37 (doi: 10.1038/ngeo.2007.52)

Berthier E (2005) Dynamique et bilan de masse des glaciers de montagne (Alpes, Islande, Himalaya): contribution de l’imagerie satellitaire. (PhD thesis, Universite´ Paul Sabatier)

Berthier E and Vincent C (2012) Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008. J. Glaciol., 58(209), 501–512 (doi: 10.3189/2012JoG11J083)

Berthier E, Arnaud Y, Baratoux D, Vincent C and Re´my F (2004) Recent rapid thinning of the Mer de Glace glacier derived from satellite optical images. Geophys. Res. Lett., 31(17), L17401 (doi: 10.1029/2004GL020706)

Bindschadler R (1982) A numerical model of temperate glacier flow applied to the quiescent phase of a surge-type glacier. J. Glaciol., 28(99), 239–265

Casassa G, Lo´ pez P, Pouyard B and Escobar F (2009) Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrol. Process., 23(1), 31–41 (doi: 10.1002/ hyp.7194)

Gabbi J, Farinotti D, Bauder A and Maurer H (2012) Ice volume distribution and implications on runoff projections in a glacierized catchment. Hydrol. Earth Syst. Sci., 16(12), 4543–4556 (doi: 10.5194/hess-16-4543-2012)

Giesen RH and Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Climate Dyn. (doi: 10.1007/ s00382-013-1743-7)

Gluck S (1967) De´termination du lit rocheux sous la Mer de Glace par se´ismique-re´flexion. C. R. Acad. Sci. (Paris), 264(19), 2272–2275

Greuell W (1992) Hintereisferner, Austria: mass-balance reconstruction and numerical modelling of the historical length variations. J. Glaciol., 38(129), 233–244

Gudmundsson GH (1999) A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 45(150), 219–230 (doi: 10.3189/ 002214399793377086)

Hubbard A, Blatter H, Nienow P, Mair D and Hubbard B (1998) Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d’Arolla, Switzerland. J. Glaciol., 44(147), 368–378

Huss M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47(W7), W07511 (doi: 10.1029/ 2010WR010299)

Huss M and Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. J. Geophys. Res., 117(F4), F04010 (doi: 10.1029/2012JF002523)

Huss M, Farinotti D, Bauder A and Funk M (2008a) Modelling runoff from highly glacierized alpine drainage basins in a changing climate.

Hydrol. Process., 22(19), 3888–3902 (doi: 10.1002/hyp.7055) Huss M, Bauder A, Funk M and Hock R (2008b) Determination of the seasonal mass balance of four Alpine glaciers since 1865. J. Geophys. Res., 113(F1), F01015 (doi: 10.1029/ 2007JF000803)

Huss M, Jouvet G, Farinotti D and Bauder A (2010) Future highmountain hydrology: a new parameterization of glacier retreat. Hydrol. Earth Syst. Sci., 14(5), 815–829 (doi: 10.5194/hess-14- 815-2010)

Huss M, Hock R, Bauder A and Funk M (2012) Conventional versus reference-surface mass balance. J. Glaciol., 58(208), 278–286 (doi: 10.3189/2012JoG11J216)

Jo´hannesson T, Raymond C and Waddington E (1989) Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 35(121), 355–369

Jouvet G, Picasso M, Rappaz J and Blatter H (2008) A new algorithm to simulate the dynamics of a glacier: theory and applications. J. Glaciol., 54(188), 801–811 (doi: 10.3189/ 002214308787780049)

Le Meur E and Vincent C (2003) A two-dimensional shallow iceflow model of Glacier de Saint-Sorlin, France. J. Glaciol., 49(167), 527–538 (doi: 10.3189/172756503781830421)

Le Meur E, Gerbaux M, Scha¨ fer M and Vincent C (2007) Disappearance of an Alpine glacier over the 21st Century simulated from modeling its future surface mass balance. Earth Planet. Sci. Lett., 261(3–4), 367–374 (doi: 10.1016/j.epsl.2007. 07.022)

Lemke P and 10 others (2007) Observations: changes in snow, ice and frozen ground. In Solomon S and 7 others eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 339–383

Leysinger Vieli GJMC and Gudmundsson GH (2004) On estimating length fluctuations of glaciers caused by changes in climatic forcing. J. Geophys. Res., 109(F1), F01007 (doi: 10.1029/ 2003JF000027)

Lliboutry L (1994) Multivariate statistical analysis of glacier annual balances. J. Glaciol., 13(69), 371-392

Lliboutry L and Reynaud L (1981) ‘Global dynamics’ of a temperate valley glacier, Mer de Glace, and past velocities deduced from Forbes’ bands. J. Glaciol., 27(96), 207–226

Lu¨ thi MP, Bauder A and Funk M (2010) Volume change reconstruction of Swiss glaciers from length change data. J. Geophys. Res., 115(F4), F04022 (doi: 10.1029/ 2010JF001695)

Mair D, Willis I, Fischer UH, Hubbard B, Nienow P and Hubbard A (2003) Hydrological controls on patterns of surface, internal and basal motion during three ‘spring events’: Haut Glacier d’Arolla, Switzerland. J. Glaciol., 49(167), 555–567 (doi: 10.3189/ 172756503781830467)

Mougin PL (1933) E´ tudes glaciologiques. Tome VII. Direction des Eaux et du Ge´nie Rural, Imprimerie Nationale, Paris Nussbaumer SU, Zumbu¨hl HJ and Steiner D (2007) Fluctuations of the ‘Mer de Glace’ (Mont Blanc area, France) AD 1500–2050: an interdisciplinary approach using new historical data and neural network simulations. Part I: the history of the Mer de Glace AD 1570–2003 according to pictorial and written documents.

Z. Gletscherkd. Glazialgeol., (2005/06) 40 Oerlemans J (2007) Estimating response times of Vadret da Morteratsch, Vadret da Palu¨ , Briksdalsbreen and Nigardsbreen from their length records. J. Glaciol., 53(182), 357–362 (doi: 10.3189/002214307783258387)

Oerlemans J and 10 others (1998) Modelling the response of glaciers to climate warming. Climate Dyn., 14(4), 267–274 (doi: 10.1007/s003820050222)

Paul F, Ka¨a¨b A and HaeberliW(2007) Recent glacier changes in the Alps observed from satellite: consequences for future monitoring strategies. Global Planet. Change, 56(1–2), 111–122 (doi: 10.1016/j.gloplacha.2006.07.007)

Pimentel S and Flowers GE (2011) A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proc. R. Soc. London, Ser. A, 467(2126), 537–558 (doi: 10.1098/ rspa.2010.0211)

Reynaud L (1973) Etude de la dynamique des se´racs du Ge´ant (Massif du Mont-Blanc). (PhD thesis, Universite´ Scientifique et Me´dicale, Grenoble)

Salzmann N, Machguth H and Linsbauer A (2012) The Swiss Alpine glaciers’ response to the global ‘28C air temperature target’. Environ. Res. Lett., 7(4), 044001 (doi: 10.1088/1748-9326/7/4/ 044001)

Salzmann N and 6 others (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere, 7(1), 103–118 (doi: 10.5194/tc-7-103-2013)

Scha¨fer M. and E. Le Meur (2007) Improvement of a 2-D SIA iceflow model: application to Glacier de Saint-Sorlin, France. J. Glaciol., 53(183), 713–722

Schwitter MP and Raymond CF (1993) Changes in the longitudinal profiles of glaciers during advance and retreat. J. Glaciol., 39(133), 582–590

Span N and Kuhn M (2003) Simulating annual glacier flow with a linear reservoir model. J. Geophys. Res., 108(D10), 4313 (doi: 10.1029/2002JD002828)

Sugiyama S., Bauder A, Zahno C and Funk M (2007) Evolution of Rhonegletscher, Switzerland, over the past 125 years and in the future: application of an improved flowline model. Ann. Glaciol., 46, 268–274

Su¨sstrunk AE (1951) Sondage du glacier par la me´thode sismique. Sub-surface glacier investigations: seismic soundings. Houille Blanche, No. spe´cial A, 309–318 (doi: 10.1051/lhb/1951010)

Thibert E and Vincent C (2009) Best possible estimation of mass balance combining glaciological and geodetic methods. Ann Glaciol., 50(50), 112–118 Vallon M (1961)

Epaisseur du glacier du Tacul (massif du Mont- Blanc). C. R. Se´ances Acad. Sci. (Paris), 252, 1815–1817 Vallon M (1967) Contribution a` l’e´tude de la Mer de Glace. (PhD thesis, Universite´ de Grenoble)

Vallot J ed. (1905) Annales de l’Observatoire me´te´orologique, physique et glaciaire du Mont Blanc (altitude 4,358 metres). Tome I a` VI. G Steinheil, Paris

Vincent C (2002) Influence of climate change over the 20th century on four French glacier mass balances. J. Geophys. Res., 107(D19), 4375 (doi: 10.1029/2001JD000832)

Vincent C, Vallon M, Reynaud L and Le Meur E (2000) Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–97. J. Glaciol., 46(154), 499–506 (doi: 10.3189/172756500781833052)

Vincent C, Kappenberger G, Valla F, Bauder A, Funk M and Le Meur E (2004) Ice ablation as evidence of climate change in the Alps over the 20th century. J. Geophys. Res., 109(D10), D10104 (doi: 10.1029/2003JD003857)

Vincent C, Soruco A, Six D and Le Meur E (2009) Glacier thickening and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentie`re, Mont Blanc area, France. Ann. Glaciol., 50(50), 73–79 (doi: 10.3189/ 172756409787769500)

Wallinga J and Van de Wal RSW (1998) Sensitivity of Rhonegletscher, Switzerland, to climate change: experiments with a one

 


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales