Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf. Stoffel & al. 2014 - A

Référence bibliographique
STOFFEL M., TIRANTI D., HUGGEL C., Climate change impacts on mass movements - case studies from the European Alps. Science of the Total Environment 493 (2014) 1255-1266

Abstract : This paper addresses the current knowledge on climate change impacts on mass movement activity in mountain environments by illustrating characteristic cases of debris flows, rock slope failures and landslides from the French, Italian, and Swiss Alps. It is expected that events are likely to occur less frequently during summer, whereas the anticipated increase of rainfall in spring and fall could likely alter debris-flow activity during the shoulder seasons (March, April, November, and December). The magnitude of debris flows could become larger due to larger amounts of sediment delivered to the channels and as a result of the predicted increase in heavy precipitation events. At the same time, however, debris-flowvolumes in high-mountain areaswill depend chiefly on the stability and/or movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows without historic precedents in the future. The frequency of rock slope failures is likely to increase, as excessively warm air temperatures, glacier shrinkage, as well as permafrost warming and thawing will affect and reduce rock slope stability in the direction that adversely affects rock slope stability. Changes in landslide activity in the French and Western Italian Alps will likely depend on differences in elevation. Above 1500 m asl, the projected decrease in snowseason duration in future winters and springs will likely affect the frequency, number and seasonality of landslide reactivations. In Piemonte, for instance, 21st century landslides have been demonstrated to occur more frequently in early spring and to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences might become more scarce in the Piemonte region.

Mots-clés
 Mass movements, climate change, impacts, debris flows, landslides, rockfalls

Organismes / Contact

Authors / Auteurs :

  • STOFFEL M., Climatic Change and Climate Impacts, Institute for Environmental Sciences, University of Geneva & Department of Earth Sciences, University of Geneva & Dendrolab.ch, Institute of Geological Sciences, University of Bern
  • TIRANTI D., Hydrology and Natural Hazards, Regional Agency for Environmental Protection of Piemonte (ARPA Piemonte)
  • HUGGEL C., Physical Geography Division, Department of Geography, University of Zurich

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
  dynamiques de versant destabilisation des versants, coulée de débris, mouvements de terrain, mouvements superficiels  

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
alpes européennes Alpes France, Italie, Suisse      

(1) - Modifications des paramètres atmosphériques
Reconstitutions
 
Observations

 

Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)



(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 
Observations
 

 

Modélisations
 
Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 

 


(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations

The drier conditions in future summers and thewetting of springs, falls and earlywinters are likely to have significant impacts on the behavior of debris flows. Based on the current understanding of the debris-flow systems and their reaction to rainfall inputs, one might expect only slight changes in the overall frequency of events by themid-21st century, but possibly an increase in the overall magnitude of debris flows due to larger amounts of sediment delivered to the channels and an increase in extreme precipitation events. In the second half of the 21st century, the overall absolute number of days with conditions favorable for the release of debris flows will likely decrease, especially in summer. The anticipated increase of liquid rainfalls during the shoulder seasons (March, April, November, December) is not expected to compensate for the decrease in future heavy summer rainfalls over 2 or 3 days in absolute terms, but magnitudes, in contrast, can be expected to increase in the study area. The volume of entrained debris from the source areas tends to be larger in summer and fallwhen the active layer of the permafrost bodies is largest and allows for larger volumes of sediment to be mobilized (Lugon and Stoffel, 2010), but the situation has been shown to depend also on the stability and climate change-related accelerations of rockglacier bodies (Stoffel and Huggel, 2012). Along with the occurrence of more extreme precipitation events, these rock-glacier instabilities could lead to debris flows without historic precedents in the future (Fig. 6).

The suite of evidence coming from the aforementioned observation and modeling studies strengthens the physical understanding of highmountain rock slope failures, and corroborates the sensitivity of rock slope failures to climate variability and change, and impacts of climate change on the cryosphere, namely glaciers and permafrost. Specifically, they indicate that (i) extremely warmtemperatures, (ii) glacier shrinkage and downwasting, and (iii) permafrostwarming and thawing affect and reduce rock slope stability. If we juxtapose these findings with the most recent assessment undertaken by the IPCC in the frame of AR5,we realize that in the course of the next decades (i)–(iii) will change even furtherwith probability ranges of 90–100% (IPCC, 2013) in the direction that adversely affects rock slope stability.

Changes in landslide activity in the Alps are likely to be related to elevation. Above 1500 m asl, the projected decrease in snowpack and duration in future winters and springs will probably affect the frequency, number and seasonality of landslide activations.

In the French Alps and the Piemonte region, 21st century landslides have been demonstrated to occur more frequently in early spring and tend to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences, might become increasingly scarce.

 

Les conditions plus sèches des prochains étés, associées à des printemps, automnes et débuts d’hiver plus humides sont à l’origine de modifications importantes du comportement des coulées de matériel sédimentaire. En se fondant sur la connaissance actuelle des systèmes de transfert sédimentaire, et de leur réaction face aux précipitations, on peut supposer que les changements dans la fréquence des événements d’ici la moitié du XXIème siècle ne seront que peu importants. Cependant, il est possible qu’on observe une augmentation de l’intensité générale des coulées de débris, conséquence d’une part d’une augmentation des stocks de sédiments libérés dans les chenaux, et d’autre part de l’augmentation des événements de précipitation extrêmes. Dans la seconde moitié du 21ème siècle, le nombre total de jours présentant des conditions favorables pour le déclenchement de coulées de débris devrait se réduire, et ce particulièrement en été. L’augmentation attendue des précipitations des saisons charnières (Mars, Avril, Novembre, Décembre) ne devrait pas être en mesure de compenser la diminution des pluies importantes en période estivale. L’intensité des événements devrait, au contraire, augmenter dans la zone d’étude. Le volume de matériaux mobilisés depuis les sources sédimentaires a tendance à être plus importante et été et en automne, lorsque les couches actives du permafrost sont plus grandes et permettent donc à des volumes de sédiments plus importants d’être mobilisés. Cependant il a été montré que cette situation dépendait également de la stabilité des glaciers rocheux et de leurs accélérations liées au changement climatique. Associée à des événements de précipitations extrêmes, l’instabilité des glaciers rocheux pourrait être à l’origine de coulées de débris sans précédents historiques.

[…] La série de preuves issues des observations et des études mentionnées précédemment [se référer à l’article complet] renforce la compréhension physique des dynamiques de versant, et corroborent la sensibilité des versants aux variations climatiques ainsi que les impacts du climat sur la cryosphère, en particulier sur les glaciers et le permafrost. Elles indiquent en particulier que (1) les températures extrêmes, (2) le recul des glaciers, et (3) le réchauffement et le dégel du permafrost ont un rôle réducteur sur la stabilité des versants.

Si nous juxtaposons ces résultats avec l’analyse récente menée par l’IPCC dans le cadre de l’AR5, cela nous amène à des transformations futures encore plus importantes qui affecteraient la stabilité des versants. Les évolutions des dynamiques de versant dans les alpes sont, de toute évidence, à relier à l’altitude. Au-dessus de 1500m la modélisation de la diminution de la taille et de la durée de la couche neigeuse dans les hivers et printemps futurs met en avant son influence sur la fréquence, le nombre et la saisonnalité de l’activation des glissements de terrain.

Modélisations
 
Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 
 

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

Aleotti P. A warning system for rainfall-induced shallow failures. Eng Geol 2004;73: 247–65.

Allen S, Huggel C. Extremely warm temperatures as a potential cause of recent high mountain rockfall. Globe Planet Change 2013;107:59–69.

Arenson L, Springman S. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C. Can Geotech J 2005;42:431–42.

Arsenault AM, Meigs AJ. Contribution of deep-seated bedrock landslides to erosion of a glaciated basin in southern Alaska. Earth Surf Process Landform 2005;30:1111–26. Ballantyne CK. Paraglacial geomorphology. Quat Sci Rev 2002;21:1935–2017.

Baroni C, Armiraglio S, Gentili R, Carton A. Landform–vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell'Avio, Adamello Group, Italy). Geomorphology 2007;84:59–79.

Beniston M. Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 2005;162:1587–606.

BenistonM. The August 2005 intense rainfall event in Switzerland: not necessarily an analog for strong convective events in a greenhouse climate. Geophys Res Letter 2006; 33:L5701.

Beniston M, Jungo P. Shifts in the distributions of pressure, temperature and moisture in the alpine region in response to the behavior of the North Atlantic Oscillation. Theor Appl Clim 2002;71:29–42.

Beniston M, Stoffel M. Assessing the impacts of climatic change on mountain water resources. Sci Total Environ 2014:1129–37. (in this issue).

Beniston M, Stoffel M, Hill M. Impacts of climatic change on water and natural hazards in the Alps: can current water governance cope with future challenges? Examples from the European “ACQWA” project. Env Sci Pol 2011;14:734–43.

Berg P, Moseley C, Haerter JO. Strong increase in convective precipitation in response to higher temperatures. Nat Geosci 2013;6:181–5.

Biancotti A, Bovo S, editors. Regional distribution of rainfalls and temperatures, Vol 1. Clima-tological studies in Piedmont, Regione Piemonte, Torino; 1998. 31 pp.

Bollschweiler M, Stoffel M. Tree rings and debris flows: recent developments, future directions. Progr Phys Geogr 2010a;34:625–45.

Bollschweiler M, Stoffel M. Variations in debris-flow occurrence in an Alpine catchment — reconstruction and implications for the future. Global Planet Change 2010b;73: 186–92.

Bollschweiler M, Stoffel M. Changes and trends in debris-flow frequency since A.D. 1850 — results from the Swiss Alps. Holocene 2010c;20:907–16.

BollschweilerM, StoffelM, Schneuwly DM. Dynamics in debris-flow activity on a forested cone — a case study using different dendroecological approaches. Catena 2008a;72: 67–78.

Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K. Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol 2008b;28:255–63.

Borga M, Stoffel M, Marchi L, Marra F, Jakob M. Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J Hydrol 2014. [in press]. Caine N. The rainfall intensity–duration control of shallow landslides and debris flows. Geogr Annaler 1980;62:23–7.

Christensen JH, Christensen OB. Climate modelling: severe summertime flooding in Europe. Nature 2003;421:805–6.

Collison A,Wade S, Griffiths J, DehnM.Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Eng Geol 2000;55:205–18.

Crozier MJ. Deciphering the effect of climate change on landslide activity: a review. Geomorphology 2010;124:260–7.

Dehn M, Bürger G, Buma D, Gasparetto P. Impact of climate change on slope stability using expanded downscaling. Eng Geol 2000;55:193–204.

Durand Y, LaternserM, Giraud G, Etchevers P, Lesaffre B,Mérindol L. Reanalysis of climate in the French Alps (1958–2002). J Appl Meteorol Climatol 2009;48:429–49.

Fatichi S, Rimkus S, Burlando P, Bordoy R. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies. Sci Total Environ 2014:1171–82. (in this issue).

Fischer L, Huggel C. Methodical design for stability assessments of permafrost-affected high-mountain rock walls; 2008. p. 439–44.

Fischer L, Amann F, Moore JR, Huggel C. Assessment of periglacial slope stability for the 1988 Tschierva rock avalanche (Piz Morteratsch, Switzerland). Eng Geol 2010;116: 32–43.

Fischer EM, Beyerle U, Knutti R. Robust spatially aggregated projections of climate extremes. Nat Clim Chang 2013;3:1033–8.

Fleming RW, Ellen SD, Algus MA. Transformation of dilative and contractive landslide debris into debris flows — an example frommarin county, California. Eng Geol 1989;27: 201–23.

Fowler AM, Hennessy KJ. Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Nat Hazard 1995;11:283–303.

Geertsema M, Clague JJ, Schwab JW, Evans SG. An overview of recent large catastrophic landslides in northern British Columbia. Canada Eng Geol 2006;83:120–43.

GobietA,Kotlarski S, BenistonM, HeinrichG, Rajczak J, Stoffel M. 21st century climate change in the European Alps — a review. Sci Total Environ 2014;493:1138–51. [in this issue].

Griffiths PG, Webb RH, Melis TS. Initiation of debris flows in bedrock canyons of the Colorado River, USA. In: Chen C, editor. Debris-flow hazard mitigation: mechanics, prediction and assessment. New York: American Society of Civil Engineering; 1997. p. 12–20.

Gruber S, Haeberli W. Mountain permafrost. Permafr. Soils Biol. Ser. Berlin: Springer; 2008. p. 348.

Guzzetti F, Peruccacci S, Rossi M, Stark CP. The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 2008;5:3–17.

Haeberli W. Mountain permafrost — research frontiers and a special long-term challenge. Cold Reg Sci Technol 2014. [in press]. Hall K, Thorn C. The historical legacy of spatial scales in freeze–thaw weathering: misrepresentation and resulting misdirection. Geomorphology 2011;130:83–90.

Hall K, Thorn CE, Matsuoka N, Prick A. Weathering in cold regions: some thoughts and perspectives. Progr Phys Geogr 2002;26:577–603.

Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, et al. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci Rev 2009;92:117–71.

Hasler A, Gruber S, Beutel J. Kinematics of steep bedrock permafrost. J Geophys Res 2012; 117:F01016.

Hilker N, Badoux A, Hegg C. The Swiss flood and landslide damage database 1972–2007. Nat Hazard Earth Syst Sci 2009;9:913–25.

Holzhauser H-P. Der Vorstoss des Gornergletschers von 1791 bis zum Hochstand um 1859 im Spiegel historischer Bild-und Schriftquellen. Bull Angew Geol 2008;13: 43–58.

Huggel C, Salzmann N, Allen SK, Caplan-Auerbach J, Fischer L, Haeberli W, et al. Recent and future warm extreme events and high-mountain slope stability. Philos Trans R Soc 2010;368:2435–59.

Huggel C, Allen S, Deline P, Fischer L, Noetzli J, Ravanel L. Ice thawing,mountains falling — are alpine rock slope failures increasing? Geol Today 2012;28:102–8.

Huggel C, Allen S, Clague JJ, Fischer L, Korup O, Schneider D. Detecting potential climate signals in large slope failures in cold mountain regions. In: Margottini C, Canuti P, Sassa K, editors. Landslide science and practice. Berlin Heidelberg: Springer; 2013. p. 361–7. IPCC.

Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM, editors. Cambridge, UK, and New York, NY, USA: Cambridge University Press; 2012.

IPCC. Summary for policymakers. Working group I contribution to the IPCC Fifth assessment report climate change 2013: the physical science basis. Cambridge, UK: Cambridge University Press; 2013.

Iverson RM, Reid ME, LaHusen RG. Debris-flow mobilization from landslides. Ann Rev Earth Planet Sci 1997;25:85–138.

Kharin VV, Zwiers FW, Zhang X, Hegerl GC. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Climate 2007;20: 1419–44.

Korup O, Görüm T, Hayakawa Y. Without power? Landslide inventories in the face of climate change. Earth Surf Process Landforms 2012;37:92–9.

Krainer K,Mostler W. Hydrology of active rock glaciers: examples from the Austrian Alps. Arctic Antarc Alpine Res 2002;34:142–9.

Kyselỳ J, Beranovà R. Climate-change effects on extreme precipitation in central Europe: uncertainties of scenarios based on regional climate models. Theor Appl Climatol 2009;95:361–74.

Larsson S. Geomorphological effects on the slopes of Langyear Valley, Spitsbergen, after a heavy rainstorm in July 1972. Geogr Ann 1982;64A:105–25.

Lopez Saez J, Corona C, Stoffel M, Astrade L, Berger F, Malet JP. Dendrogeomorphic reconstruction of past landslide reactivation with seasonal precision: the Bois Noir landslide, southeast French Alps. Landslides 2012a;9:189–203.

Lopez Saez J, Corona C, StoffelM, Schoeneich P, Berger F. Probability maps of landslide reactivation derived from tree-ring records: Pra Bellon landslide, southern French Alps. Geomorphology 2012b;138:189–202.

Lopez Saez J, Corona C, Stoffel M, Berger F. Climate change increases frequency of shallow spring landslides in the French Alps. Geology 2013a;41:619–22.

Lopez Saez J, Corona C, Stoffel M, Berger F. High-resolution fingerprints of past landsliding and spatially explicit, probabilistic assessment of future activations: Aiguettes landslide, Southeastern French Alps. Tectonophysics 2013b;602:355–69.

Lugon R, Stoffel M. Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Global Planet Change 2010;73:202–10.

Malet J-P, Remaître A, Maquaire O, Durand Y, Etchevers P, Guyomarch G, et al. Assessing the influence of climate change on the activity of landslides in the Ubaye Valley. London: Taylor & Francis; 2007. p. 195–205.

MeteoSwiss. On-line database from MeteoSwiss. http://www.meteoswiss.ch/en/, 2013. [edited]. Meusburger K, Alewell C. On the infl uence of temporal change on the validity of landslide susceptibility maps. Nat Hazard Earth Syst Sci 2009;1495–1507.

O'Gorman PA, Schneider T. The physical basis for increases in precipitation extremes in simulations of 21st‐century climate change. Proc Natl Acad Sci 2009;106:14773–7.

Oppikofer T, Jaboyedoff M, Keusen HR. Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 2008;1:531–5.

Orlowsky B, Seneviratne SI. Global changes in extreme events: regional and seasonal dimension. Clim Change 2012;110:669–96.

PAGES 2k consortium. Continental-scale temperature variability during the past two millennia. Nat Geosci 2013;6:339–46.

Pellicciotti F, Carenzo M, Bordoy R, Stoffel M, Burlando P. Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. Sci Total Environ 2014;493 :1152–70. [in this issue].

Ramasco, M., Susella, G., 2007. Note illustrative della carta dei processi di instabilità conseguenti l'evento del 3–6 Novembre 1994 alla scala 1:50.000. Fogli nn. 193 Alba, 210 Fossano, 211 Dego. Ravanel L, Deline P. Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blancmassif) since the end of the ‘Little Ice Age’. Holocene 2011;21:357–65.

Ravanel L, Allignol F, Deline P, Gruber S, Ravello M. Rock falls in the Mont Blanc Massif in 2007 and 2008. Landslides 2010;7:493–501.

Rist A. Hydrothermal processes within the active layer above alpine permafrost in steep scree slopes and their influence on slope stability. PhD thesis Swiss Federal Institute for Snow and Avalanche Research and University of Zurich; 2001. Rousselot M, Durand Y, Giraud G, Mérindol L, Dombrowski-Etchevers I, Déqué M, et al. Statistical adaptation of ALADIN RCM outputs over the French Alps: application to future climate and snow cover. Cryosphere 2012;6:785–805.

Salzmann N, Nötzli J, Hauck C, Gruber S, Hoelzle M, Haeberli W. RCM-based ground surface temperature scenarios in high-mountain topography and their uncertainty ranges. J Geophys Res 2007;112:F02S12.

Sassa K. The mechanism starting liquefied landslides and debris flows. IV Int. Symposium on Landslides, Toronto; 1984. Sattler K, Keiler M, Zischg A, Schrott L. On the connection between debris-flow activity and permafrost degradation: a case study from the Schnalstal, South Tyrolean Alps, Italy. Permafrost Periglac Process 2011;22:254–65.

Schmidli J, Frei C. Trends of heavy precipitation and wet and dry spells in Switzerland during the 20th century. Int J Climatol 2005;25:753–71.

Schneider T, O'Gorman PA, Levine X. Water vapor and the dynamics of climate changes. Rev Geophys 2010;48:RG000302.

Schneuwly DM, Stoffel M, BollschweilerM. Formation and spread of callus tissue and tangential rows of resin ducts in Larix decidua and Picea abies following rockfall impacts. Tree Physiol 2009a;29:281–9.

Schneuwly DM, Stoffel M, Dorren LKA, Berger F. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance. Tree Physiol 2009b;29:1247–57.

Schneuwly-Bollschweiler M, Stoffel M. Hydrometeorological triggers of periglacial debris flows in the Zermatt Valley (Switzerland) since 1864. J Geophys Res 2012;117: F02033.

Schneuwly-Bollschweiler M, Corona C, Stoffel M. How to improve dating quality and reduce noise in tree-ring based debris-flow reconstructions. Quat Geochronol 2013; 18:110–8.

Sorg A, Bugmann H, BollschweilerM, StoffelM. Tree disturbance and forest dynamics on a cone affected by debris flows. Dendrochronologia 2010;28:215–23.

Stoffel M. Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia 2008;26:53–60.

Stoffel M. Magnitude-frequency relationships of debris flows — a case study based on field surveys and tree-ring records. Geomorphology 2010;116:67–76.

Stoffel M, Beniston M. On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: a case study from the Swiss Alps. Geophys Res Letter 2006;33:L16404.

Stoffel M, Bollschweiler M. Tree-ring analysis in natural hazards research — an overview. Nat Hazard Earth System Sci 2008;8:187–202.

Stoffel M, Corona C. Dendroecological dating of geomorphic disturbance in trees. Tree Ring Res 2014;70:3–20.

StoffelM, Hitz OM. Snow avalanche and rockfall impacts leave different anatomical signatures in tree rings of Larix decidua. Tree Physiol 2008;28:1713–20.

Stoffel M, Huggel C. Effects of climate change on mass movements in mountain environments. Progr Phys Geogr 2012;36:421–39.

StoffelM, Schneuwly D, Bollschweiler M, Lievre I, Delaloye R, MyintM, et al. Analyzing rockfall activity (1600–2002) in a protection forest — a case study using dendrogeornorphology. Geomorphology 2005a;68:224–41.

Stoffel M, Lièvre I, Monbaron M, Perret S. Seasonal timing of rockfall activity on a forested slope at Täschgufer (Swiss Alps) — a dendrochronological approach. Z Geomorphol 2005b;49:89–106.

Stoffel M, Lièvre I, Conus D, GrichtingMA, Raetzo H, GärtnerHW, et al. 400 years of debris flow activity and triggering weather conditions: Ritigraben VS, Switzerland. Arctic Antarc Alp Res 2005c;37:387–95.

Stoffel M, Conus D, Grichting MA, Lièvre I, Maître G. Unraveling the patterns of late Holocene debris-flow activity on a cone in the central Swiss Alps: chronology, environment and implications for the future. Global Planet Change 2008;60:222–34.

Stoffel M, Bollschweiler M, Widmer S, Sorg A. Spatio-temporal variability in debris-flow activity: a tree-ring study at Geisstriftbach (Swiss Alps) extending back to AD 1736. Swiss J Geosci 2010;103:283–92.

Stoffel M, Bollschweiler M, Beniston M. Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences — potential future evolutions. Clim Change 2011; 105:263–80.

StoffelM, Butler DR, Corona C.Massmovements and tree rings: a guide to dendrogeomorphic field sampling and dating. Geomorphology 2013;200:106–20.

Stoffel M, Mendlik T, Schneuwly-Bollschweiler M, Gobiet A. Possible impacts of climate change on debris-flow activity in the Swiss Alps. Clim Change 2014;122:141–55.

Strozzi T, Delaloye R, Kääb A, Ambrosi C, Perruchoud E,Wegmüller U. Combined observations of rockmass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J Geophys Res 2010;115:F01014.

Terzago S, Cassardo C, Cremonini R, Fratianni S. Snow precipitation and snow cover climatic variability for the period 1971–2009 in the southwestern Italian Alps: the 2008–2009 snow season case study. Water 2010;2:773–87.

Tiranti D, Rabuffetti D. Estimation of rainfall thresholds triggering shallow landslides for an operational warning system implementation. Landslides 2010;7:471–81.

Tiranti D, Rabuffetti D, Salandin A, Tararbra M. Development of a new translational and rotational slides prediction model in Langhe hills (north-western Italy) and its application to the 2011 March landslide event. Landslides 2013;10:121–38.

Toreti A, Schneuwly-Bollschweiler M, Stoffel M, Luterbacher J. Atmospheric forcing of debris flows in the southern Swiss Alps. J Appl Meteorol Climatol 2013;52:1554–60.

Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A. Observations: surface and atmospheric climate change. In: IPCC, editor. The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2007. p. 235–336.

Tropeano D, Turconi L. Using historical documents for landslide, debris flow and stream flood prevention. Nat Hazard 2004;31:663–79.

Tropeano D, Luino F, Turconi L. Eventi di piena e frana in Italia settentrionale nel periodo 2004-2002. CNR-IRPI/GNDCI. Pubbl. n. 2911; 2006. 159 pp.

Uhlmann M, Korup O, Huggel C, Fischer L, Kargel JS. Supra-glacial deposition and flux of catastrophic rock–slope failure debris, south-central Alaska. Earth Surf Process Landforms 2013;38:675–82.

Wieczorek GF, Glade T. Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O, editors. Debris-flow hazards and related phenomena. Chichester: Springer; 2005. p. 325–62.

Willenberg H, Evans KF, Eberhardt E, Spillmann T, Loew S. Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): part II — three-dimensional deformation patterns. Eng Geol 2008;101:15–32.

Worni R, Huggel C, Stoffel M. Glacier lakes in the Indian Himalayas — glacier lake inventory, on-site assessment andmodeling of critical glacier lakes. Sci Total Environ 2013; 468–469:S71–84.


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales