Réf. Ramming & al. 2010 - A

Référence bibliographique complète

RAMMING, A., JONAS, T., ZIMMERMANN, N.E., RIXEN, C. 2010. Changes in alpine plant growth under future climate conditions. Biogeosciences, 7, 2013–2024. [Etude en ligne]

Abstract: Alpine shrub- and grasslands are shaped by extreme climatic conditions such as a long-lasting snow cover and a short vegetation period. Such ecosystems are expected to be highly sensitive to global environmental change. Prolonged growing seasons and shifts in temperature and precipitation are likely to affect plant phenology and growth. In a unique experiment, climatology and plant growth was monitored for almost a decade at 17 snow meteorological stations in different alpine regions along the Swiss Alps. Regression analyses revealed highly significant correlations between mean air temperature in May/June and snow melt out, onset of plant growth, and plant height. These correlations were used to project plant growth phenology for future climate conditions based on the gridded output of a set of regional climate models runs. Melt out and onset of growth were projected to occur on average 17 days earlier by the end of the century than in the control period from 1971–2000 under the future climate conditions of the low resolution climate model ensemble. Plant height and biomass production were expected to increase by 77% and 45%, respectively. The earlier melt out and onset of growth will probably cause a considerable shift towards higher growing plants and thus increased biomass. Our results represent the first quantitative and spatially explicit estimates of climate change impacts on future growing season length and the respective productivity of alpine plant communities in the Swiss Alps.

Mots-clés

 

 

Organismes / Contact

• Earth System Analysis, Potsdam Institute for Climate Impact Research, Telegraphenberg A62, 14412 Potsdam, Germany
• WSL Institute for Snow and Avalanche Research SLF, Flüelastr. 11, 7260 Davos Dorf, Switzerland
• WSL Institute for Forest Snow and Landscape Research, Zürcherstr. 111, 8903 Birmensdorf, Switzerland

 

(1) - Paramètre(s) atmosphérique(s) modifié(s)

(2) - Elément(s) du milieu impacté(s)

(3) - Type(s) d'aléa impacté(s)

(3) - Sous-type(s) d'aléa

 

 

 

 

 

Pays / Zone

Massif / Secteur

Site(s) d'étude

Exposition

Altitude

Période(s) d'observation

Swiss Alps

 

 

 

1560- 2545m

 

 

(1) - Modifications des paramètres atmosphériques

Reconstitutions

 

Observations

The global temperature is increasing and in Earth’s alpine regions signs of climate change can already be observed visually by the impressive melting of the alpine glaciers (e.g. Oerlemans, 2005) or upward migration of plant species (Grabherr et al., 1994). Data indicate that especially in high altitude and latitude regions the climate is changing more rapidly than elsewhere (IPCC, 2007; Arctic Climate Impact Assessment – ACIA, 2004).

Modélisations

Modelling of future climate in the Alps is hampered by the complex alpine topography. Nevertheless, current climate models agree in expecting increased temperatures in all seasons by 2050. Regional climate scenarios for the Swiss Alps are discussed in detail in the OcCC report (OcCC Konsortium, 2007). According to these scenarios, a temperature increase of 3°C in summer and 2°C in fall, winter, and spring may be expected. Summer precipitation is expected to decrease by 20% and winter precipitation to increase by 10%.

Hypothèses

 

 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)

 

 

(2) - Effets du changement climatique sur le milieu naturel

Reconstitutions

 

Observations

In the Alps, mean snow depth, the duration of continuous snow cover and the number of snowfall days at mid and low elevations have decreased since the 1980s (Laternser and Schneebeli, 2003; Marty, 2008), and the decrease can be attributed to rising temperatures (Scherrer et al., 2004). (…)

Alpine vegetation has already responded to the changing environmental conditions: Alpine plant species have been migrating upward (e.g. Grabherr et al., 1994; Walther et al., 2005; Sanz-Elorza et al., 2003), the tree line has expanded to higher elevations (Camarero and Gutiérrez, 2004; Gehrig-Fasel et al., 2007; Kullman, 2002; Mindas et al., 2000; Penuelas and Boada, 2003; Sanz-Elorza et al., 2003; Shiyatov et al., 2007), while in the Arctic, shrub cover has become denser and higher (Sturm et al., 2001; Tape et al., 2006). A first step in investigating phenology and growth pattern of alpine plants consists in analyzing long-term monitoring data. Keller et al. (2000) analysed a 70 year-dataset from permanent vegetation plots at high elevations. They found an earlier onset of growth due to shorter winter periods. However, their study was only based on one site in Switzerland. Other long term monitoring investigations in Switzerland (e.g. Swiss phenological “Spring plant” time series, 1702–2007) were used to estimate changes in phenology and to develop phenological models, however these studies were conducted at elevations below 800ma.s.l. (Rutishauser et al., 2008; Schleip et al., 2008a, b). Manipulation experiments showed a strong response of flowering phenology to earlier snow-melt in subalpine and alpine ecosystems (Dunne et al., 2003; Rixen et al., 2010; Wipf et al., 2006).

Modélisations

The combined effects of the snow line rising in altitude due to increased temperature and the changes in temperature-precipitation patterns are expected to result in increasing amounts of snow in midwinter only above 2000ma.s.l. (Abegg et al., 2007; OcCC Konsortium, 2007). At the same time warmer temperatures will also accelerate snow depletion, and thus increasing peak snow depth will not necessarily translate into later melt out. On the contrary, several snow climatological studies predict significantly earlier melt out (Beniston et al., 2003; Jasper et al., 2004; Keller et al., 2000; Laternser and Schneebeli, 2003; Scherrer et al., 2004). Also studies using distributed snow cover models project melt out to be preponed by several weeks within the next century (Bavay et al., 2009; Magnusson et al., 2009). As a direct effect of those snow cover changes, the timing of the growing season will be altered. (…)

To our knowledge, so far no models have attempted to quantify the expected changes in snow melt timing on plant growth and phenology in alpine and subalpine areas. Shifting phenology of various plant species was projected often using the relation between air temperature and spring phenology, but not for the Alps (e.g. Menzel et al., 2006; Schleip et al., 2008a; Sparks et al., 2000). Species distribution model are applied in studies on shifts in species ranges in alpine regions (e.g. Brooker et al., 2007; Guisan and Theurillat, 2000; Guisan et al., 1998; Theurillat and Guisan, 2001). These models are often applied to large regions and can be used to estimate potential changes in species distribution and diversity depending on environmental factors. They however do not consider transient changes and non-linear effects on vegetation (e.g. discussions in Hickler et al., 2009; Rickebusch et al., 2008; Thuiller et al., 2008). Such dynamics are incorporated in dynamic vegetation models, which are in many studies applied to forests in mountain regions (e.g. Fischlin and Gyalistras, 1997b; Lischke et al., 1998) but not to areas above tree line. However, variables resulting from complex interactions of factors, such as timing of plant growth may currently be better addressed with simple but straightforward modelling approaches. (…)

Projections of melt out, onset of growth and biomass

Melt out: The mean date of melt out (VM) as predicted from Tobs for all stations was 27 May (day of year 148±15 days) between 1997 and 2005. VM predicted from Tobs and Tsim low corresponded well and had a RMSE of 10.58. All projections consistently estimated melt out to occur earlier in the year over the next century. Our simulations for the recent past (1971–2000) estimated mean melt out on 12 June (day of year 163±9 days). Due to the standardization method of the climate data as performed by Mitchell et al. (2005; see Methods section), the temperature pathway for the control period (1971–2000) was the same for the four climate scenarios. Under future climate conditions, the projections of melt out differed clearly, with strongest changes projected by the HadCM3 model forced with the SRES-A1FI CO2 trajectory. Melt out was projected to occur by the end of the century at 17 May (mean: day of year 137±9 days), which is about 26 days earlier than under current conditions. For the HadCM3-A2 model, VM was projected 18 days earlier (day of year 145±9 days), for the HadCM3-B1 two weeks earlier (day of year 149±9 days), and for the NCAR-PCM-A2 one week (day of year 157±9 days) earlier by the end of the century compared to the 1971–2000 control period.

Melt out projections from high resolution HadCM3-A2 temperature (Tsim high) were generally similar to the low resolution climate data. Earlier melt out is particularly displayed at the northern and southern edge of the Alps, and within valleys. In the four regions of Switzerland, the projected melt out standardized for 2000m altitude showed small differences: in the Northern Alps, melt out occurred two days later than in Southern Alps and three days later than in the Eastern and Western central Alps under current climate conditions. These differences increased under projected future climate, with melt out occurring first in the Western and Eastern central Alps at day 147, two days later in the southern Alps and six days later in the North.

Onset of growth: The onset of growth (VG) was strongly related to melt out and followed at the measured sites about two weeks after melt out (c.f. Jonas et al., 2008), at approximately 11 June (day of year 163±16 days). VG for Tobs and Tsim low for the current period 1997–2005 corresponded well (RMSE=12.53). Generally, the projections from Tsim low estimated VG to occur earlier in the year. For the simulated control period from 1971-2000, the model predicted VG to take place at about 29 June (day of year 180±10 days). Under future climate conditions, simulated VG was one month earlier under the HadCM3-A1FI scenario (day of year 149±10 days), 21 days earlier under the HadCM3-A2 scenario (day of year 159±10 days), and one week earlier under the NCAR-PCMA2 scenario (day of year 173±10 days) for all of Switzerland. Onset of growth as projected from the high resolution temperature data differed about one week between the investigated regions in Switzerland. VG was calculated to start earliest in the Western and Eastern Central Alps on 18 June, followed by Southern Alps one day later and 3 days later in the Northern Alps.

Plant height: Mean plant height (VP) across all sites and years was 27.9±17.8 cm. Mean VP corresponded to a biomass production of 339±252 gm−2. For the current period 1997–2005 VP, from Tobs and from Tsim low were in good agreement for each site and each year (RMSE=8.40). Under the control climate (1971–2000), the model predicted a plant height of 16.2±7.0 cm (estimated biomass: 233 gm−2). By the end of the century, plant height increased to 36.2 cm (i.e. a factor of two; estimated biomass: 389 gm−2) in the warm HadCM3-A1FI climate scenario, and to 21.2 cm (estimated biomass: 286 gm−2) in the cooler NCAR-PCM-A2 scenario. Plant height was projected to increase from 20 cm to up to 38 cm until the end of the century (biomass: 400 gm−2).

Discussion

The presented study estimated potential changes in melt out, onset of growth and plant height/biomass under future climate conditions based on a set of measured data in combination with climate scenarios. Our results showed significantly earlier melt out and start of the vegetation period and increased plant growth depending on the climate scenarios.

Impacts of climate change on alpine vegetation

Timing of melt out and onset of the vegetation period: Changes in the timing of melt out are generally determined by a complex interaction of temperature and precipitation: According to climate scenarios of the OcCC Consortium (2007) winter precipitation will increase by 10%. This may only lead to higher amounts of snow in mid winter above 2000m altitude (Abegg et al., 2007; OcCC Konsortium, 2007). However, due to projected warmer temperatures and thus accelerated snow melt, increasing peak snow depth are not necessarily leading to a shift to later melt out. The mechanism of warmer temperatures leading to earlier melt out was observed at mid and high elevation ranges during the last decades (Beniston, 2006; Laternser and Schneebeli, 2003; Scherrer et al., 2004). Also recent alpine surface model simulations for river catchments at varying altitudes in the Alps showed 3 to 5 weeks earlier melt out (for the SRES-A2 and B, respectively) by the end of the century (Bavay et al., 2009; Magnusson et al., 2009). Our projections of earlier melt out from May/June temperature correspond with these findings.

Earlier melt out will probably affect alpine vegetation in many ways. Earlier melt out results in a prolonged vegetation period, and thus, potentially higher productivity (see section “Plant growth”). However, several non-linear effects may modify snow-melt effects on vegetation: The snow cover shields the plants from low temperatures by keeping the temperature at a constant level during the winter (e.g. Jones et al., 2001). Thus, if the snow cover is disappearing earlier but frost risk remains constant, which may be expected in a future climate, plants may suffer from freezing damage in early spring frosts (Inouye, 2000). Also elevated CO2 in the atmosphere and warmer temperatures may change the freezing sensitivity of plants (Martin et al., 2010). Therefore, the view that earlier melt out may only come with the beneficial effects of a prolonged vegetation period may be overly simplistic. Our study shows that melt out and the onset of growth may occur up to three weeks earlier, leading to the conclusion that changes in vegetation phenology, and likely also changes in vegetation productivity and composition, will be substantial. An enhanced green-up has already been observed with remote sensing techniques in the Arctic (Myneni et al., 1997) but not yet in the Alps, probably because of methodological problems due to the topography of the Alps (Fontana et al., 2008).

Plant growth: Our results suggest that alpine ecosystems will respond to a prolonged growing season with considerably increased plant growth, which is in line with earlier studies on cold-limited ecosystems (Euskirchen et al., 2006; Myneni et al., 1997). The projected increase in productivity is likely to have major impacts on alpine ecosystems. The altered environmental conditions will probably lead to changes in plant communities. It can be expected that many plant species will migrate to higher elevations as can already be observed (Grabherr et al., 1994; Walther et al., 2005). Therefore, competition may increase in the lower alpine belt by highly productive species (Callaway et al., 2002; Wipf et al., 2006) and plant diversity may increase in the higher alpine and nival belt (Walther et al., 2005). Our estimates indicate an increase in aboveground standing biomass. This finding may lead to the conclusion that ecosystems above tree line may become a carbon sink in the future. On the other hand, warmer temperatures and increased microbial activity will likely cause a loss of carbon from alpine soils (Hagedorn et al., 2009). Since a higher amount of carbon is stored in soils than in the aboveground biomass above tree line (Devi et al., 2008; Kammer et al., 2009) this indicates that alpine ecosystems may turn into carbon sources rather than sinks.

Limitations and benefits of the modelling approach

In our study, we made use of a unique dataset measuring the end of the snow covered period, the onset of growth, and vegetation height at altitudes of 1500–2500ma.s.l. at 17 sites in the Swiss Alps. Our modelling approach allowed us to make a first quantitative assessment of future melt out, timing of plant growth and productivity, whereas most previous studies have been mostly qualitative. Our regression model approach is simple, and was based on a large scale and long-term monitoring dataset. The simulations of melt out, onset of growth and plant height with low resolution climate models corresponded well with observations, which suggests that the models were robust.

For the low resolution climate projections, we used single point ground observations to scale up to a 16 km grid cell. This is especially problematic in Alpine regions with extreme differences in microclimate. However, the IMIS data that we were using were significantly correlated to low resolution satellite data (Fontana et al., 2008), which showed that the IMIS data were representative for melt out, growth onset and vegetation height on a larger scale.

Our results illustrate how alpine plant communities may respond to climate change. It is important to note that our projections only hold if future plant communities resemble those today. Our data cover a large spatial and ecological domain, thus represent a range of different species assemblages. Therefore, our data cover both short-term responses, i.e. how a given plant community may respond to climate change without changing the species composition, as well as long-term responses, i.e. assuming that the plant community composition will change over time. It is of course uncertain how future plant communities will look like. However, numerous studies have demonstrated that alpine species have already started to migrate upward in response to rising temperatures within the last decades (Grabherr et al., 1994; Keller et al., 2000; Walther et al., 2005), which supports our view of long-term plant community change.

The relationships between environmental variables and plant communities are more complex than a model can realistically cope with. Jonas et al. (2008) demonstrated with the same data set that climate indices drive alpine plant growth in a complex network of specific effects. Therefore, it is unlikely that simple linear relationships from one driving variable describe future changes in plant growth in detail. The onset of the vegetation period depends on the depth of the snow-pack, on water availability and many other factors (e.g. Dunne et al., 2003; Rixen et al., 2010). Plant growth will furthermore be influenced by effects of CO2, nutrient availability, land-use and the effects of extreme events that may lead to non-linear responses. The large scatter in the relationship between plant height and temperatures demonstrates that productivity is probably driven by other important factors than only temperatures. Recent dynamic vegetation models have addressed the complexity of plant growth by explicitly including processes such as photosynthesis, respiration and carbon allocation within the plants to roots, leaves, sapwood and heartwood (e.g. Krinner et al., 2005; Sitch et al., 2003; Smith et al., 2001). These models explicitly incorporate the effects of climatology on plant growth over time such as changing temperature, precipitation, incoming radiation and CO2. Wolf et al. (2008) adapted a dynamic vegetation model (LPJ-GUESS) for arctic shrubland vegetation. Several dynamic forest models have been applied to estimate shifts in tree line (e.g. Cairns, 2005; Lischke et al., 2002; Rupp et al., 2001). However, dynamic models for simulating different alpine plant communities considering biotic interactions among species are scarce (Humphries et al., 1996). As a result, the models available today can not yet provide projections for more complex relationships between alpine climate and plant growth generally and for larger areas. Therefore, we chose a simple but robust temperature variable as a predictor for snow melt timing and plant growth to provide a first step towards estimating snow cover, plant phenology and plant productivity in alpine regions under changed climatic conditions. We trust the general validity of our models also from the fact that at tree line, temperature is the major driving force limiting growth (Körner, 1998). This is e.g. demonstrated by the fact that even the European heat wave in 2003 accompanied by a record drought caused increased plant growth above 1200–1500ma.s.l. Obviously, moisture was not limiting, and therefore plants primarily responded to changes in summer temperatures in high elevation ecosystems (Jolly et al., 2005).

The climate mapping and the downscaling of climate anomalies may be prone to errors, specifically when it comes to forecasting regional differences. We believe that the general trend of earlier melt out and onset of growth and increased growth and biomass are reliable, while our spatial projections to sub-regional scale may be less reliable in general.

Hypothèses

 Our results represent the first quantitative and spatially explicit estimates of climate change impacts on melt out, growth onset and productivity in the Swiss Alps. Our results indicate that by the end of the century significant changes in the timing of melt out (6–26 days earlier), onset of growth (one week to one month earlier) and productivity are expected to occur. This may seem to represent a relatively small change. However, as the vegetation period in the Alps is very short, the preponed onset of growth may result almost in a doubling of the length of the vegetation period. Likewise, the projections of biomass production over a season resulted in changes up to two-fold, which represents a dramatic increase in productivity and which will alter the dynamics of alpine ecosystems considerably. Also, we expect changes in both ecosystem processes, such as carbon and nutrient cycling, as well as changes in potential of the vegetation to reduce or increase natural hazards, such as snow avalanches or mudslides.

 

Sensibilité du milieu à des paramètres climatiques

Informations complémentaires (données utilisées, méthode, scénarios, etc.)

 

In the present study, we make use of a unique data set from a Swiss network of automated snow measuring stations distributed over the central part of the Alps (Jonas et al., 2008). Their study has determined snow-climatologic predictors for plant height and growth rates for vegetation at these sites using path analysis. However, their predictors constitute complex interactions between melt out, temperature and precipitation, which today are hardly predictable from general circulation model (GCMs) or regional climate model (RCM) data. To overcome this problem, here we re-analysed the data set for correlation between plant growth data and climate indices which are well represented by today’s climate models. Ultimately, we used correlations between melt out (M), growth onset (G) and plant height (P) and mean temperatures of May and June to project effects of climate change into the future. In particular, we asked the following questions: How much earlier can melt out be expected in the Swiss Alps in a changing climate? How may future climate changes influence the timing of growth and productivity in Alpine plant communities?  

[see details in the study]

 

(3) - Effets du changement climatique sur l'aléa

Reconstitutions

 

Observations

 

Modélisations

 

Hypothèses

Our results represent the first quantitative and spatially explicit estimates of climate change impacts on melt out, growth onset and productivity in the Swiss Alps. Our results indicate that by the end of the century significant changes in the timing of melt out (6–26 days earlier), onset of growth (one week to one month earlier) and productivity are expected to occur. This may seem to represent a relatively small change. However, as the vegetation period in the Alps is very short, the preponed onset of growth may result almost in a doubling of the length of the vegetation period. Likewise, the projections of biomass production over a season resulted in changes up to two-fold, which represents a dramatic increase in productivity and which will alter the dynamics of alpine ecosystems considerably. Also, we expect changes in both ecosystem processes, such as carbon and nutrient cycling, as well as changes in potential of the vegetation to reduce or increase natural hazards, such as snow avalanches or mudslides.

 

Paramètre de l'aléa

Sensibilité des paramètres de l'aléa à des paramètres climatiques

Informations complémentaires (données utilisées, méthode, scénarios, etc.)

 

 

 

 

(4) - Remarques générales

 

 

(5) - Syntèses et préconisations

We see several future research needs from our results. First, long-term monitoring datasets such as the one applied in the present study are rare. However, particularly for estimating potential impacts of climate change, the value of this kind of data is high. In order to develop appropriate models to estimate changes in snow cover and vegetation, to estimate parameters and for the validation of these models, data from field measurements and from long-term monitoring sites are necessary. Additionally for this kind of studies, improved climate scenarios, particularly for precipitation at higher resolution are helpful. This and the results from our study could help to develop and improve dynamic models for alpine vegetation and/or coupled dynamic vegetation-snowpack models. Next, we propose experimental tests for better disentangling the effect of other factors from the dominant spring temperature effect. Notably, the interplay of precipitation (with its importance on snow cover duration) and temperature need to be studied. Finally, we believe that the development of better dynamic models for alpine ecosystems will be beneficial for making improved projections under climate change.

Références citées :

Abegg, B., Agrawala, S., Crick, F., and de Montfalcon, A.: Climate change impacts and adaptation in winter tourism, in: Climate change in the European Alps: adapting winter tourism and natural hazards management, Organization for Economic Cooperation and Development, Paris, 25–60, 2007.

Arctic Climate Impact Assessment (ACIA): Impacts of a Warming Arctic, Cambridge University Press, New York, 139 pp., 2004.

Bavay, M., Lehning, M., Jonas, T., and Lowe, H.: Simulations of future snow cover and discharge in Alpine headwater catchments, Hydrol. Process., 23, 95–108, doi:10.1002/hyp.7195, 2009.

Beniston, M., Keller, F., Koffi, B., and Goyette, S.: Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions, Theor. Appl. Climatol., 76, 125–140, doi:10.1007/s00704-003-0016-5, 2003.

Beniston, M.: Mountain weather and climate: A general overview and a focus on climatic change in the Alps, Hydrobiologia, 562, 3–16, doi:10.1007/s10750-005-1802-0, 2006.

Brooker, R. W., Travis, J. M. J., Clark, E. J., and Dytham, C.: Modelling species’ range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change, J. Theor. Biol., 245, 59–65, 2007.

Cairns, D. M.: Simulating carbon balance at treeline for krummholz and dwarf tree growth forms, Ecol. Model., 187, 314–328, doi:10.1016/j.ecolmodel.2005.01.041, 2005.

Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., Paolini, L., Pugnaire, F. L., Newingham, B., Aschehoug, E. T., Armas, C., Kikodze, D., and Cook, B. J.: Positive interactions among alpine plants increase with stress, Nature, 417, 844–848, 2002.

Camarero, J. J. and Gutiérrez, E.: Pace and pattern of recent treeline dynamics response of ecotones to climatic variability in the Spanish Pyrenees, Climatic Change, 63, 181–200, 2004.

Devi, N., Hagedorn, F., Moiseev, P., Bugmann, H., Shiyatov, S., Mazepa, V., and Rigling, A.: Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century, Global Change Biol., 14, 1581–1591, 2008.

Dunne, J. A., Harte, J., and Taylor, K. J.: Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods, Ecol. Monogr., 73, 69–86, 2003.

Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuang, Q., Clein, J. S., Dargaville, R. J., Dye, D. G., Kimball, J. S., Mc-Donald, K. C., Melillo, J. M., Romanovsky, V. E., and Smith, N. V.: Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems, Global Change Biol., 12, 731–750, 2006.

Fischlin, A. and Gyalistras, D.: Assessing impacts of climatic change on forests in the Alps, ISI:A1997XL65100004, 19–37, 1997a.

Fischlin, A. and Gyalistras, D.: Assessing impacts of climatic change on forests in the Alps, Global Ecol. Biogeogr., 6, 19–37, 1997b.

Fontana, F., Rixen, C., Jonas, T., Aberegg, G., and Wunderle, S.: Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series – a comparison with in situ measurements, Sensors, 8, 2833–2853, 2008.

Franke, R.: Smooth interpolation of scattered data by local thin plate splines, Comput. Math. Appl. , 8, 237–281, 1982.

Fronzek, S., and Jylhä, K.: Scenarios of climate change for Europe, in: Atlas of Biodiversity Risks – from Europe to the globe, from stories to maps, edited by: Settele, J., Penev, L., Georgiev, T., Grabaum, R., Grobelnik, V., Hammen, V., Klotz, S., and K¨uhn, I., Pensoft, Sofia, Moscow, 2009.

Gehrig-Fasel, J. A. G., Guisan, A., and Zimmermann, N. E.: Tree line shifts in the Swiss Alps: Climate change or land abandonment?, J. Veg. Sci., 18, 571–582, 2007.

Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000.

Grabherr, G., Gottfried, M., and Pauli, H.: Climate effects on mountain plants, Nature, 369, 448, 1994.

Guisan, A., Theurillat, J. P., and Kienast, F.: Predicting the potential distribution of plant species in an Alpine environment, J. Veg. Sci., 9, 65–74, 1998.

Guisan, A. and Theurillat, J.-P.: Assessing alpine plant vulnerability to climate change: a modeling perspective, Integrat. Ass. Studies, 1, 307–320, 2000.

Hagedorn, F., Martin, M., Rixen, C., Rusch, C., Bebi, P., Zürcher, A., Siegwolf, R., Wipf, S., Escape, C., Roy, J., and Hättenschwiler, S.: Short-term responses of ecosystem carbon fluxes to experimental soil warming at the Swiss alpine treeline, Biogeochemistry, 97, 7–19, 2009.

Hickler, T., Fronzek, S., Araujo, M. B., Schweiger, O., Thuiller, W., and Sykes, M. T.: An ecosystem model-based estimate of changes in water availability differs from water proxies that are commonly used in species distribution models, Global Ecol. Biogeogr., 18, 304–313, doi:10.1111/j.1466-8238.2009.00455.x, 2009.

Humphries, H. C., Coffin, D. P., and Lauenroth, W. K.: An individual-based model of alpine plant distributions, Ecol. Model., 84, 99–126, 1996.

Inouye, D.W.: The ecological and evolutionary significance of frost in the context of climate change, Ecol. Lett., 3, 457–463, 2000.

IPCC: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp., 2007.

Jasper, K., Calanca, P., Gyalistras, D., and Fuhrer, J.: Differential impacts of climate change on the hydrology of two alpine river basins, Clim. Res., 26, 113–129, 2004.

Jolly, W. M., Dobbertin, M., Zimmermann, N. E., and Reichstein, M.: Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps, Geophys. Res. Lett., 32, L18409, doi:10.1029/2005GL023252, 2005.

Jones, H. G., Pomeroy, J. W., Walker, D. A., and Hoham, R. W.: Snow ecology, Cambridge University Press, 2001.

Kammer, A., Hagedorn, F., Shevchenko, I., Leifeld, J., Guggenberger, G., Goryacheva, T., Rigling, A., and Moiseev, P.: Treeline shifts in the Ural mountains affect soil organic matter dynamics, Global Change Biol., 15, 1570–1583, 2009.

Keller, F., Kienast, F., and Beniston, M.: Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps, Reg. Environ. Change, 1, 70–77, 2000.

Körner, C.: A re-assessment of high elevation treeline positions and their explanation, Oecologia, 115, 445–459, 1998.

Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, 44, Gb1015, doi:10.1029/2003gb002199, 2005.

Kullman, L.: Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes, J. Ecol., 90, 68–77, 2002.

Laternser, M. and Schneebeli, M.: Long-term snow climate trends of the Swiss Alps (1931–99), Int. J. Climatol., 23, 733–750, doi:10.1002/joc.912, 2003.

Lischke, H., Guisan, A., Fischlin, A., and Bugmann, H.: Vegetation response to climate change in the Alps: modeling studies, in: Views from the Alps: Regional Perspective from Climate Change, edited by: Cebon, P., Dahinden, U., Davies, H. C., Imboden, D., and Jaeger, C. C., MIT Press, Cambridge, MA, 309–350, 1998.

Magnusson, J., Jonas, T., Lopez-Moreno, I., and Lehning, M.: Snow cover response to climate change in a high alpine and half glaciated basin in Switzerland, Hydrol. Res., 41, 230–240, doi:10.2166/nh.2010.115, 2010.

Martin, M., Gavazov, K., Körner, C., Hättenschwiler, S., and Rixen, C.: Reduced early growing season freezing resistance in alpine treeline plants under elevated atmospheric CO2, Global Change Biol., 16, 1057–1070, 2010.

Marty, C.: Regime shift of snow days in Switzerland, Geophys. Res. Lett., 35, L12501, doi:10.1029/2008gl033998, 2008.

Menzel, A., Sparks, T., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kubler, K., Bissolli, P., Braslavska, O., Briede, A., Chmielewski, F. M., Crepinsek, Y. C., Dahl, A., Defila, C., Donnelly, A., Filella, Y., Jatczak, F. M., Mestre, A., Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F.-E., Zach, S., and Zust, A.: European phenological response to climate change matches the warming pattern, Global Change Biol., 12, 1969–1976, doi:10.1111/j.1365-2486.2006.01193.x., 2006.

Mindas, J., Skvarenia, J., Strelkova, J., and Priwitzer, T.: Influence of climatic changes on Norway spruce occurrence in the West Carpathians, J. Forest Sci., 46, 249–259, 2000.

Mitchell, T. D., Carter, T. R., Jones, P. D., Hulme, M., and New, M.: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100), Tyndall Centre Working Paper, 30 pp., 2004.

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: Increased plant growth in the northern high latitudes from 1981 to 1991, Nature, 386, 698–702, 1997.

Nakicenovic, N., Alcamo, J., Davis, G., De Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R. V., Van Rooijen, S., Victor, N., and Dadi, Z.: IPCC Special report on emission scenarios, edited by: Nakicenovic, N. and Swart, R., Cambridge University Press, Cambridge, 612 pp., 2000.

New, M., Hulme, M., and Jones, P.: Representing twentieth-century space-time climate variability, Part II: Development of 1901–1996 monthly grids of terrestrial surface climate, J. Climate, 13, 2217–2238, 2000.

OcCC Konsortium: Klimaänderung und die Schweiz 2050 – Erwartete Auswirkungen auf Umwelt, Gesellschaft undWirtschaft, OcCC/ProClim, Bern, 172, 2007.

Oerlemans, J.: Extracting a climate signal from 169 glacier records, Science, 308, 675–677, 2005.

Penuelas, J. and Boada, M.: A global change-induced biome shift in the Montseny mountains (NE Spain), Global Change Biol., 9, 131–140, 2003.

Rhyner, J., Bründl, M., Etter, H.-J., Steiniger, M., Stöckli, U., Stucki, T., Zimmerli, M., and Ammann, W.: Avalanche Warning Switzerland-Consequences of the Avalanche Winter 1999, Int. Snow Science Workshop, Penticton, Canada, 30 September to 3 October, 2002.

Rickebusch, S., Thuiller, W., Hickler, T., Araujo, M. B., Sykes, M. T., Schweiger, O., and Lafourcade, B.: Incorporating the effects of changes in vegetation functioning and CO2 on water availability in plant habitat models, Biol. Lett., 4, 556–559, doi:10.1098/rsbl.2008.0105, 2008.

Rixen, C., Schwoerer, C., and Wipf, S.: Winter climate change on different temporal scales in alpine dwarf shrubs, Polar Res., 29, 85–94, 2010.

Rupp, T. S., Chapin, F. S., and Starfield, A. M.: Modeling the influence of topographic barriers on treeline advance at the forest tundra ecotone in northwestern Alaska, Climatic Change, 48, 399–416, 2001.

Rutishauser, T., Luterbacher, J., Defila, C., Frank, D., and Wanner, H.: Swiss spring plant phenology 2007: Extremes, a multicentury perspective, and changes in temperature sensitivity, Geophys. Res. Lett., 35(5), L05703, doi:10.1029/2007gl032545, 2008.

Sanz-Elorza, M., Dana, E. D., Gonzalez, A., and Sobrino, E.: Changes in the high-mountain vegetation of the central Iberian peninsula as a probable sign of global warming, Ann. Bot., 92, 273–280, doi:10.1093/aob/mcg130, 2003.

Scherrer, S. C., Appenzeller, C., and Laternser, M.: Trends in Swiss alpine snow days – the role of local and large scale climate variability, Geophys. Res. Lett., 31, L13215, doi:10.1029/2004GL020255, 2004.

Schleip, C., Menzel, A., and Dose, V.: Norway spruce (Picea abies): Bayesian analysis of the relationship between temperature and bud burst, Agr. Forest Meteorol., 148, 631–643, doi:10.1016/j.agrformet.2007.11.008, 2008a.

Schleip, C., Rutishauser, T., Luterbacher, J., and Menzel, A.: Time series modeling and central European temperature impact assessment of phenological records over the last 250 years, J. Geophys. Res.-Biogeo., 113(13), G04026, doi:10.1029/2007jg000646, 2008b.

Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data, Proceedings of the 1968 ACM National Conference, 517–524, doi:10.1145/800186.810616, 1968.

Shiyatov, S. G., Terentév, M. M., Fomin, V. V., and Zimmermann, N. E.: Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century, Russ. J. Ecol., 38, 223–227, 2007.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplans, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161-185, 2003.

Smith, B., Prentice, I. C., and Sykes, M.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogegr., 10, 621–637, 2001.

Sparks, T. H., Jeffree, E. P., and Jeffree, C. E.: An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK, Int. J. Biometeorol., 44, 82–87, 2000.

Sturm, M., Racine, C., and Tape, K.: Climate change – Increasing shrub abundance in the Arctic, Nature, 411, 546–547, 2001.

Tape, K., Sturm, M., and Racine, C.: The evidence for shrub expansion in Northern Alaska and the Pan-Arctic, Global Change Biol., 12, 686–702, doi:10.1111/j.1365-2486.2006.01128.x, 2006.

Theurillat, J. P. and Guisan, A.: Potential impact of climate change on vegetation in the European Alps: A review, Climatic Change, 50, 77–109, 2001.

Thuiller, W., Albert, C., Araujo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgely, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., and Zimmermann, N. E.: Predicting global change impacts on plant species’ distributions: Future challenges, Perspect. Plant Ecol., 9, 137–152, doi:10.1016/j.ppees.2007.09.004, 2008.

Walther, G. R., Beissner, S., and Burga, C. A.: Trends in the upward shift of alpine plants, J. Veg. Sci., 16, 541–548, 2005.

Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J., Bettge, T.W., Craig, A. P., Strand, W. G., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y.: Parallel climate model (PCM) control and transient simulations, Clim. Dynam., 16, 755–774, 2000.

Wipf, S., Rixen, C., and Mulder, C. P. H.: Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community, Global Change Biol., 12, 1496–1506, 2006.

Wolf, A., Callaghan, T. V., and Larson, K.: Future changes in vegetation and ecosystem function of the Barents Region, Climatic Change, 87, 51–73, doi:10.1007/s10584-007-9342-4, 2008.

Zimmermann, N. E. and Kienast, F.: Predictive mapping of alpine grasslands in Switzerland: species versus community approach, J. Veg. Sci., 10, 469–482, 1999.