Réf. Böhm & al. 2005 - A

Référence bibliographique complète
BÖHM R., AUER I., SCHÖNER W. Exploring past climate variability in the greater alpine region. Croatian Meteorological Journal, 2005, p.106-110. 

Abstract: The presentation discusses the potential, the needs and the state of the art of climate variability data quality and analysis in the instrumental period. The greater alpine region is used as an example. Problems and solutions concerning the non climatic noise in time series is discussed (the homogeneity and outlier problem) and some first results based on the new HISTALP datasets are shown.

Climate variability, instrumental period, data quality, Greater Alpine Region

Organismes / Contacts
Central Institute for Meteorology and Geodynamics (ZAMG) Climate Department, Vienna.
reinhard.boehm@zamg.ac.at ; ingeborg.auer@zamg.ac.at ; wolfgang.schoener@zamg.ac.at

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
Precipitations, temperatures, air pressure      

Pays / Zone
Massif / Secteur
Site(s) d'étude
Période(s) d'observation
Greater Alpine Region 4 to 19 deg E, 43 to 49 deg N, 725 000 km² HISTALP station-mode network     1760-2000

(1) - Modifications des paramètres atmosphériques
Concerning regional differences long-term temperature variability is regionally highly similar for the entire GAR: the Mediterranean parts not different to the Atlantic – continental sector, as well as a high similarity of high elevation (2000 to 3400m asl) vs. low elevation sites.

Long-term precipitation variability on the contrary shows several subregionally different features. Especially the Mediterranean part has sometimes even opposite trend signs versus the Atlantic subregion for several decades.

Sharp recent wetting trends in autumn in the past 20 years, wet summers, autumns and winters versus dry springs in the 1800 to 1850 period, warm springs and summers versus cool winters near 1800, mild winters-cool summers in the 1910s, air-pressure seasonal features closely following those of temperature.

The most striking regional air pressure differences are given for the low vs. high elevation subgroups. Low elevation air pressure mimics air temperature very closely – thus indicating a strong respective advective forcing in the GAR. The stronger centennial air pressure increase of the high vs. the low elevation subgroup on the other hand has been used as an independent and “nonthermometric” proof for 19th-20th century warming of a “mean Alpine air column” in the region representative for the lower 3 km of the troposphere.

Informations complémentaires (données utilisées, méthode, scénarios, etc.)

Temperature: Temperature annual, GAR and subregions, 30 years low pass filtrered (1760-2000). Anomalies to 20th century mean. Precipitation: Precipitation annual, GAR and subregions, single year and 30 years low pass filtrered (1800-2003). Anomalies to 20th century mean. Air pressure: All GAR low and high elevation mean annual air pressure series, single year and 30 years low pass filtrered. Anomalies to 1961-1990 mean. Standard deviation series in 30 years moving windows (30 years highpass filtrered) of annual temperature 12 longest single series and of annual precipitation.

(2) - Impacts du changement climatique sur le milieu naturel

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)

(3) - Impacts du changement climatique sur l'aléa

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)

(4) - Remarques générales
Studies planned by the same team on similar topics : common analysis of different climate elements, comparative subregional trends analysis in the GAR, vertical structure of climate variability (0 to 3400m asl), GAR-variability in the greater context of continental to global scale variability.

(5) - Syntèses et préconisations