Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf. Boeckli & al. 2012

Référence bibliographique
BOECKLI L., BRENNING A, GRUBER S., and NOETZLI J. Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics. The Cryosphere, 6, 807–820

Abstract: The objective of this study is the production of an Alpine Permafrost Index Map (APIM) covering the entire European Alps. A unified statistical model that is based on Alpine-wide permafrost observations is used for debris and bedrock surfaces across the entire Alps. The explanatory variables of the model are mean annual air temperatures, potential incoming solar radiation and precipitation. Offset terms were applied to make model predictions for topographic and geomorphic conditions that differ from the terrain features used for model fitting. These offsets are based on literature review and involve some degree of subjective choice during model building. The assessment of the APIM is challenging because limited independent test data are available for comparison and these observations represent point information in a spatially highly variable topography. The APIM provides an index that describes the spatial distribution of permafrost and comes together with an interpretation key that helps to assess map uncertainties and to relate map contents to their actual expression in the terrain. The map can be used as a first resource to estimate permafrost conditions at any given location in the European Alps in a variety of contexts such as research and spatial planning. Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area.

Mots-clés
 

Organismes / Contact
  • Department of Geography, University of Zurich, Switzerland
  • Department of Geography and Environmental Management, University of Waterloo, Ontario, Canada
  • Corresponding author: lorenz.boeckli@geo.uzh.ch

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
mean annual air temperatures, potential incoming solar radiation and precipitation spatial distribution of permafrost    

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
Europe European Alps        

(1) - Modifications des paramètres atmosphériques
Reconstitutions
 
Observations
 
Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 

(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 The topographic and climatic variables that are required to apply APMOD are calculated according to Boeckli et al. (2012). In the following, data and methods are combined to derive an Alpine-wide surface cover that is considered in APIM (Sect. 3.1), and to prepare evaluation data for APIM (Sect. 3.2). Section 3.3 describes the method to derive Alpine-wide summary statistics
Observations
 
Modélisations
 
Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 

(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations
 
Modélisations

Calculated permafrost index areas provide an indication of possible permafrost extents in different subregions of the Alps. The relative area of permafrost occurrence in relation to the total area of the Alps is estimated to be 3% when considering an index  0.5.

Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area.

Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 

We suggest that the index represents an indicator of the probability for permafrost occurrence, the spatial percentage of permafrost per cell and/or the thickness of the permafrost body for current climatic conditions. The index can also be interpreted as a proxy of the mean annual ground temperature

However, permafrost extent, thickness or temperature cannot be allocated directly with the values of the index, because various local and regional processes are neglected or only approximated by the model.

 The statistical model that is applied in this study, APMOD, is described in detail by Boeckli et al. (2012). APMOD is based on an Alpine-wide evidence collection (Cremonese et al., 2011) and uses mean annual air temperatures (MAAT), potential incoming solar radiation (PISR) and the mean annual sum of precipitation (PRECIP) as explanatory variables. APMOD involves two sub-models for two different land cover classes: The debris model has been calibrated using rock glacier inventories and predicts the probability of rock glaciers being intact as opposed to relict. The rock model is based on mean annual rock surface temperatures (MARST) and predicts the probability of finding MARST  0 °C in steep bedrock. Both models are combined based on fuzzy membership (linear function depending on slope angle. Sect. 3.1) to the land cover types rock and debris, and allow the inclusion of temperature offset terms. These offset terms are required to generalize APMOD to other surface characteristics than those used for model calibration. When applied to digital elevation models (DEMs) of differing resolution, scaling functions improve the coherence and comparability of the results. The probabilities of permafrost occurrence derived from APMOD are translated into permafrost index values

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

BAFU: Hinweiskarte der potentiellen Permafrostverbreitung in der Schweiz, Swiss Federal Office for the Environment (FOEN), 2005.

Barsch, D.: Active rock glaciers as indicators for discontinuous alpine permafrost, An example from the Swiss Alps, in: Proceedings of the 3th International Conference on Permafrost, Edmonton, Canada, 10–13 July, 1, 349–352, 1978.

Bodin, X.: G´eodynamique du Perg´elisol Alpin: Fonctionnement, distribution et ´evolution r´ecente, L’Exemple du Massif du Combeynot (Hautes Alpe), Ph.D. thesis, Universit´e Denis Diderot Paris 7, France, 2007.

Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges, The Cryosphere, 6, 125–140, doi:10.5194/tc-6-125-2012, 2012.

Bonnaventure, P. P., Lewkowicz, A. G., Kremer, M., and Sawada, M. C.: A Permafrost Probability Model for the Southern Yukon and Northern British Columbia, Canada, Permafrost Periglac., 23, 52–68, doi:10.1002/ppp.1733, 2012.

Brenning, A.: Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models, SAGA-Seconds Out, 19, 23–32, 2008. Brenning, A., Gruber, S., and Hoelzle, M.: Sampling and statistical analyses of BTS measurements, Permafrost Periglac., 16, 383– 393, doi:10.1002/ppp.541, 2005.

Cohen, J.: A Coefficient of Agreement for Nominal Scales, Educ. Psychol. Meas., 20, 37–46, doi:10.1177/001316446002000104, 1960. Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Boeckli, L., Noetzli, J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K., Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi, R., and Zischg, A.: Brief Communication: “An inventory of permafrost evidence for the European Alps”, The Cryosphere, 5, 651–657, doi:10.5194/tc-5-651-2011, 2011.

Delaloye, R., Reynard, E., Lambiel, C., Marescot, L., and Monnet, R.: Thermal anomaly in a cold scree slope (Creux du Van, Switzerland), in: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 1, 175–180, 2003.

Ebohon, B. and Schrott, L.: Modeling mountain permafrost distribution: A new map of Austria, in: Proceedings of the 9th Interna tional Conference on Permafrost, Fairbanks, Alaska, 30 June–3 July, 397–402, 2008.

Etzelm¨uller, B., Farbrot, H., Gudhmundsson, A., Humlum, O., Tveito, O., and Bj¨ornsson, H.: The regional distribution of mountain permafrost in Iceland, Permafrost Periglac., 18, 185–199, doi:10.1002/ppp.583, 2007.

Fontana, F., Rixen, C., Jonas, T., Aberegg, G., and Wunderle, S.: Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series – a Comparison with In Situ Measurements, Sensors, 8, 2833–2853, doi:10.3390/s8042833, 2008.

Frauenfelder, R.: Rock glaciers, Fletschhorn Area, Valais, Switzerland, International Permafrost Association, Data and InformationWorking Group, NSIDC, University of Colorado at Boulder, 1998.

Frauenfelder, R., Schneider, B., and K¨a¨ab, A.: Using dynamic modelling to simulate the distribution of rockglaciers, Geomorphology, 93, 130–143, doi:10.1016/j.geomorph.2006.12.023, 2008.

Gorbunov, A. P., Marchenko, S. S., and Seversky, E. V.: The thermal environment of blocky materials in the mountains of Central Asia, Permafrost Periglac., 15, 95–98, doi:10.1002/ppp.478, 2004.

Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, doi:10.5194/tc-6-221-2012, 2012.

Gruber, S. and Haeberli,W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, doi:10.1029/2006JF000547, 2007.

Gruber, S. and Haeberli, W.: Mountain permafrost, in: Permafrost Soils, edited by: Margesin, R., Biology Series, Springer, 16, 33– 44, doi:10.1007/978-3-540-69371-0 3, 2009.

Gruber, S. and Hoelzle, M.: Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data, Permafrost Periglac., 12, 69–77, doi:10.1002/ppp.374, 2001.

Gruber, S. and Hoelzle, M.: The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism, in: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 30 June–3 July, 1, 557–561, 2008.

Gruber, S., Peter, M., Hoelzle, M.,Woodhatch, I., and Haeberli,W.: Surface temperatures in steep Alpine rock faces – a strategy for regional-scale measurement and modelling, in: Proceedings of the 8th International Conference on Permafrost, Zurich, Switzerland, 21–25 July, 1, 325–330, 2003.

Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scaledependent measurement and analysis of ground surface temperature variability in alpine terrain, The Cryosphere, 5, 431–443, doi:10.5194/tc-5-431-2011, 2011.

Haeberli, W.: Die Basis-Temperatur der winterlichen Schneedecke als m¨oglicher Indikator f¨ur die Verbreitung von Permafrost in den Alpen, Zeitschrift f¨ur Gletscherkunde und Glazialgeologie, IX/1/2, 221–227, 1973.

Haeberli, W.: Untersuchungen zur Verbreitung von Permafrost zwischen Fl¨uelapass und Piz Grialetsch (Graub¨unden), Mitteilungen der Versuchsanstalt f¨ur Wasserbau, Hydrologie und Glaziologie der ETH Z¨urich, Zurich, Switzerland, 17, 221 pp., 1975.

Haeberli, W.: Eistemperaturen in den Alpen, Zeitschrift f¨ur Gletscherkunde und Glazialgeologie, 11, 203–220, 1976.

Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., K¨a¨ab, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and M¨uhll, D. V.: Permafrost creep and rock glacier dynamics, Permafrost Periglac., 17, 189–214, doi:10.1002/ppp.561, 2006.

Hanson, S. and Hoelzle, M.: Installation of a shallow borehole network and monitoring of the ground thermal regime of a high alpine discontinuous permafrost environment, Eastern Swiss Alps, Norsk Geogr. Tidsskr., 59, 84–93, doi:10.1080/00291950510020664, 2005.

Harris, C., Arenson, L. U., Christiansen, H. H., Etzelm¨uller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., H¨olzle, M., Humlum, O., Isaksen, K., K¨a¨ab, A., Kern-L¨utschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., N¨otzli, J., Phillips, M., Ross, N., Sepp¨al¨a, M., Springman, S. M., and M¨uhll, D. V.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Sci. Rev., 92, 117–171, doi:10.1016/j.earscirev.2008.12.002, 2009.

Harris, S. and Pedersen, D.: Thermal regimes beneath coarse blocky materials, Permafrost Periglac., 9, 107–120, doi:10.1002/(SICI)1099-1530(199804/06)9:2<107::AIDPPP277> 3.0.CO;2-G, 1998.

Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, doi:10.5194/tc-5-977-2011, 2011.

Hayakawa, Y., Oguchi, T., and Lin, Z.: Comparison of new and existing global digital elevation models: ASTER GDEM and SRTM-3, Geophys. Res. Lett., 35, L17404, doi:10.1029/2008GL035036, 2008.

Heggem, E., Juliussen, H., and Etzelm¨uller, B.: Mountain permafrost in central-eastern Norway, Norsk Geogr. Tidsskr., 59, 94–108, doi:10.1080/00291950510038377, 2005.

Hijmans, R. J. and van Etten, J.: raster: Geographic analysis and modeling with raster data, R package version 1.9-64, The R Foundation for Statistical Computing, Vienna, 2012.

Hoelzle, M.: Permafrost occurrence from BTS measurements and climatic parameters in the Eastern Swiss Alps, Permafrost Periglac., 3, 143–147, doi:10.1002/ppp.3430030212, 1992.

Hoelzle, M.: Permafrost und Gletscher im Oberengadin: Grundlagen und Anwendungsbeispiele f¨ur automatisierte Sch¨atzverfahren, Mitteilungen der VAW-ETH Zurich, 132, 121 pp., 1994.

Hoelzle, M., Haeberli, W., and Keller, F.: Application of BTSmeasurements for modelling permafrost distribution in the Swiss Alps, in: Proceedings of the 6th International Conference on Permafrost, South China University Technology Press, Beijing, 272–277, 1993.

Hoelzle, M., Haeberli, W., and Stocker-Mittaz, C.: Miniature ground temperature data logger measurements 2000–2002 in the Murt`el-Corvatsch area, Eastern Swiss Alps, in: Proceedings of the 8th International Conference on Permafrost. Zurich, Switzerland, 21–25 July, 419–424, 2003.

Hosmer, D. and Lemeshow, S.: Applied logistic regression, Wiley- Interscience, New York, 2000. Huete, A.: A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295–309, doi:10.1016/0034-4257(88)90106- X, 1988.

Humlum, O.: Active layer thermal regime at three rock glaciers in Greenland, Permafrost Periglac., 8, 383–408, doi:10.1002/(SICI)1099-1530(199710/12)8:4<383::AIDPPP265> 3.0.CO;2-V, 1997.

Imhof, M.: Modelling and verification of the permafrost distribution in the Bernese Alps, Switzerland, Permafrost Periglac., 17, 267– 280, doi:10.1002/(SICI)1099-1530(199609)7:3<267::AIDPPP221> 3.0.CO;2-L, 1996.

International Organization for Standardization: International Standard Atmosphere, Standard Atmosphere ISO 2533:1975, 1975.

Janke, J. R.: The occurrence of alpine permafrost in the Front Range of Colorado, Geomorphology, 67, 375–389, doi:10.1016/j.geomorph.2004.11.005, 2004.

Juliussen, H. and Humlum, O.: Thermal regime of openwork block fields on the mountains Elg°ahogna and Sølen, central-eastern Norway, Permafrost Periglac., 19, 1–18, doi:10.1002/ppp.607, 2008.

Keller, F.: Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO, Permafrost Periglac., 3, 133–138, doi:10.1002/ppp.3430030210, 1992.

Keller, F., Frauenfelder, R., Hoelzle, M., Kneisel, C., Lugon, R., Phillips, M., Reynard, E., and Wenker, L.: Permafrost map of Switzerland, in: Proceedings of the 7th International Conference on Permafrost, Nordicana, Yellowknife, Canada, 23–27 June, 557–562, 1998.

Kneisel, C.: New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2D resistivity imaging, Permafrost Periglac., 15, 221–227, doi:10.1002/ppp.495, 2004.

Kneisel, C. and K¨a¨ab, A.: Mountain permafrost dynamics within a recently exposed glacier forefield inferred by a combined geomorphological, geophysical and photogrammetrical approach, Earth Surf. Proc. Landforms, 32, 1797–1810, doi:10.1002/esp.1488, 2007.

Kneisel, C., Haeberli, W., and Baumhauer, R.: Comparison of spatial modelling and field evidence of glacier/permafrost relations in an Alpine permafrost environment, Ann. Glaciol., 31, 269– 274, 2000.

Lambiel, C. and Reynard, E.: Regional modelling of present, past and future potential distribution of discontinuous permafrost based on a rock glacier inventory in the Bagnes–He´e re´e mence area (Western Swiss Alps), Norsk Geogr. Tidsskr., 55, 219–223, 2001.

Lewkowicz, A. and Bonnaventure, P.: Interchangeability of mountain permafrost probability models, northwest Canada, Permafrost Periglac., 19, 49–62, doi:10.1002/ppp.612, 2008.

Lewkowicz, A. G. and Ednie, M.: Probability mapping of mountain permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada, Permafrost Periglac., 15, 67–80, doi:10.1002/ppp.480, 2004.

Li, J., Sheng, Y., Wu, J., Chen, J., and Zhang, X.: Probability distribution of permafrost along a transportation corridor in the northeastern Qinghai province of China, Cold Regions Sci. Technol., 59, 12–18, doi:10.1016/j.coldregions.2009.05.012, 2009.

Luthi, M. P. and Funk, M.: Modelling heat flow in a cold, high-altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps, J. Glaciol., 47, 314–324, doi:10.3189/172756501781832223, 2001.

Mason, S. and Graham, N.: Areas beneath the relative operating characteristics (roc) and relative operating levels (rol) curves: Statistical significance and interpretation, Q. J. Royal Meteorol. Soc., 128, 2145–2166, doi:10.1256/003590002320603584, 2002.

Matsuoka, N., Ikeda, A., and Date, T.: Morphometric analysis of solifluction lobes and rock glaciers in the Swiss Alps, Permafrost Periglac., 16, 99–113, doi:10.1002/ppp.517, 2005.

Noetzli, J. and Gruber, S.: Transient thermal effects in Alpine permafrost, The Cryosphere, 3, 85–99, doi:10.5194/tc-3-85-2009, 2009.

Olaya, V.: A gentle introduction to SAGA GIS, edition 1.1, user’s guide, University of G¨ottingen, G¨ottingen, Germany, available at: http://www.saga-gis.org/en/index.html(last access: 25 July 2012), 2004.

Paul, F., Frey, H., and Le Bris, R.: A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results, Ann. Glaciol., 52, 144–152, 2011.

PERMAFRANCE: Permafrost in France, edited by: Schoeneich, P., Bodin, X., Krysiecki, J. M., Deline, P., and Ravanels, L., Permafrance Network, Report Nr. 1, 68 pp., 2010.

Pogliotti, P.: Influence of snow cover on MAGST over complex morphologies in mountain permafrost regions, Ph.D. thesis, Earth Science Department, University of Turin, Italy, 2010.

R Development Core Team: Development Core Team: R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, available at: http://www.R-project.org, 2010.

Serrano, E., Agudo, C., Delaloye, R., and Gonzalez-Trueba, J.: Permafrost distribution in the Posets massif, Central Pyrenees, Norsk Geogr. Tidsskr., 55, 245–252, 2001.

swisstopo: Vector25 – das digitale Landschaftsmodell der Schweiz, Bundesamt f¨ur Landestopographie, Wabern (CH), 2007.

Tanarro, L., Hoelzle, M., Garc´ıa, A., Ramos, M., Gruber, S., G´omez, A., Piquer, M., and Palacios, D.: Permafrost distribution modelling in the mountains of the Mediterranean: Corral del Veleta, Sierra Nevada, Spain, Norsk Geogr. Tidsskr., 55, 253– 260, 2001.

Zhang, T., Heginbottom, J. A., Barry, R. G., and Brown, J.: Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere, Polar Geography, 24, 126–131, doi:10.1080/10889370009377692, 2000.

 


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales