Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf. Zampieri & al. 2015 - A

Référence bibliographique
ZAMPIERI M., SCOCCIMARRO E., GUALDI S., NAVARRA A., (2015) Observerd shift towards earlier spring discharge in the main Alpine rivers. Science of the Total Environment 503-505 pp. 222-223.

Abstract : In this study, we analyse the observed long-term discharge time-series of the Rhine, the Danube, the Rhone and the Po rivers. These rivers are characterised by different seasonal cycles reflecting the diverse climates and morphologies of the Alpine basins. However, despite the intensive and varied water management adopted in the four basins, we found common features in the trend and low-frequency variability of the spring discharge timings. All the discharge time-series display a tendency towards earlier spring peaks of more than two weeks per century. These results can be explained in terms of snowmelt, total precipitation (i.e. the sum of snowfall and rainfall) and rainfall variability. The relative importance of these factors might be different in each basin. However, we show that the change of seasonality of total precipitation plays a major role in the earlier spring runoff over most of the Alps.

Mots-clés
 Mountain hydrology, Spring, Snowmelt, River discharge, Precipitation seasonality, Water management

Organismes / Contact

Authors /Auteurs :

  • ZAMPIERI M., Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), V.le A. Moro 44, 40127 Bologna, Italy
  • SCOCCIMARRO E., Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), V.le A. Moro 44, 40127 Bologna, Italy & Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy
  • GUALDI S., Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), V.le A. Moro 44, 40127 Bologna, Italy & Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy
  • NAVARRA A., Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), V.le A. Moro 44, 40127 Bologna, Italy & Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
       

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
           

(1) - Modifications des paramètres atmosphériques
Reconstitutions
 
Observations

 

Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)



(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 
Observations
 We found a consistent earlier spring discharge of more than two weeks per century in the basins located north of the Alps (Rhine and Danube), and more than three weeks per century in the basins located to the south (Rhone and Po).The low-frequency (decadal) fluctuations of spring discharge timings can be partly explained by changes in the snowmelt timings, especially in the Rhine and Po basins, and partly by changes in the liquid precipitation ratio in all basins except the Rhone and the Po.We detected a recent shift towards a pluvial-torrential regime with respect to the snowmelt-dominated regime that has characterised the southern basins since the 1970s and the northern basins since the 1980s. These changes can amplify the flood risk (Eckhardt and Ulbrich, 2003; Dobler et al., 2012) and partially explain the earlier discharges that we found in the 1960s. Finally, we found consistent changes in some aspects of the precipitation seasonality that probably drive much of the long-term trend and the low-frequency fluctuations of spring discharge timings. Interestingly, our analysis of the difference between the spring and winter precipitation improves the consistency of the results when different independent datasets are compared.
Nous avons mis en évidence une apparition plus rapide de la décharge printanière de plus de 2 semaines (par siècle) pour les bassins localisés dans le nord des Alpes (Rhin & Danube), et de plus de 3 semaines (par siècle) pour les bassins situés dans le sud (Rhônes et Po). Les basses fréquences des fluctuations dans l’apparition des décharge printanières peuvent être en partie expliquées par les changements de temporalité de la fonte des neiges, et ce, particulièrement dans les bassins du Rhin et du Po. Elles peuvent également être en partie expliquées par la transformation des ratios de précipitations liquides dans tous les bassins, à l’exception de ceux du Po et du Rhône. Nous avons mis en évidence un récent changement du régime pluvio-torrential par rapport au régime de fonte des neiges dominant, qui a caractérisé les bassins du sud depuis 1970 et ceux du nord depuis 1980. Ces changements peuvent être à l’origine d’une amplification du risque d’inondation, et expliquer en partie l’apparition plus rapide des décharges printanières que nous avons mis en évidence à partir de 1960. Enfin, nous avons pu observer des changements importants sur certains aspects des précipitations saisonnières, probablement à l’origine de l’évolution des tendances à long terme et de la modification des fluctuations à basse fréquence de la temporalité des décharges printanières.
Modélisations
 
Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 

 


(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations
 
Modélisations
 
Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 
 

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

Aguado E, Cayan D, Riddle L, Roos M. Climatic fluctuations and the timing of the westcoast streamflow. J Climate 1992;5:1468–83.

Arora VK, Boer GJ. Effects of simulated climate change on the hydrology of major river basins. J Geophys Res Atmos 2001;106:3335–48.

Arrigoni AS, Greenwood MC, Moore JN. Relative impact of anthropogenic modifications versus climate change on the natural flow regimes of rivers in the Northern Rocky Mountains, United States. Water Resour Res 2010;46:W12542.

Auer I, Böhm R, Jurkovic A, LipaW, Orlik A, Potzmann R, et al. HISTALP — historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 2007;27:17–46.

Bard A, Renard B, LangM. Observed trends in the hydrologic regime of Alpine catchments. La Houille Blanche 2012;1:38–43.

Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005;438:303–9.

Bengtsson L, Hagemann S, Hodges KI. Can climate trends be calculated from reanalysis data? J Geophys Res 2004;109:D11111.

Beniston M. Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Clim Change 1997;36: 281–300.

Beniston M. Impacts of climatic change on water and associated economic activities in the Swiss Alps. J Hydrol 2012;412:291–6.

Beniston M, Keller F, Goyette S. Snow pack in the Swiss Alps under changing climatic conditions; an empirical approach for climate impacts studies. Theor Appl Climatol 2002; 74:19–31.

Beniston M, Keller F, Koffi B, Goyette S. Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol 2003;76: 125–40.

Beniston M, StoffelM, Hill M. Impacts of climatic change on water and natural hazards in the Alps: can current water governance cope with future challenges? Examples from the European “ACQWA” project. Environ Sci Pol 2011;14:734–43.

BirsanMV,Molnar P, Burlando P, Pfaundler M. Streamflow trends in Switzerland. J Hydrol 2005;314:312–29.

Bookhagen B, Burbank DW. Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res 2010;115:F03019.

Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Böhm R, et al. Climate variability and change in the greater alpine region over the last two centuries based on multivariable analysis. Int J Climatol 2009;27:17–46.

Cayan DR, Kammerdiener SA, DettingerMD, Caprio JM, Peterson PH. Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 2001;82:399–415.

Chambers JMIn: Chambers JM, Hastie TJ, editors. Linear models. Wadsworth & Brooks/ Cole; 1992.

Chimani B, Böhm R, Matulla C, Ganekind M. Development of a longterm dataset of solid/ liquid precipitation. Adv Sci Res 2011;6:39–43.

Chow VT, Maidment DR, Mays LW. Applied hydrology. New York: McGraw- HillBook Co.; 1988 [572 pp]. Clow DW. Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Climate 2010;23:2293–306.

Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, et al. The Twentieth Century Reanalysis Project. Q J R Meteorol Soc 2011;137:1–28.

Dettinger MD, Cayan DR. Large-scale atmospheric forcing of recent trends towards early snowmelt runoff in California. J Climate 1995;8:606–23.

Dobler C, Burger G, Stotter J. Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed. J Hydrol 2012;460:29–39.

Eckhardt K, Ulbrich U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 2003;284:244–52.

Efthymiadis D, Jones PD, Briffa KR, Auer I, Böhm R, SchönerW, et al. Construction of a 10- min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. J Geophys Res 2006;110:D01105.

Elsasser H, Burki R. Climate change as a threat to tourism in the Alps. Clim Res 2002;20: 253–7.

Fagerli H, Legrand M, Preunkert S, Vestreng V, Simpson D, Cerqueira M. Modeling historical long-term trends of sulfate, ammonium, and elemental carbon over Europe: a comparison with ice core records in the Alps. J Geophys Res 2007;112:D23S13.

Feng X, Porporato A, Rodriguez-Iturbe I. Changes in rainfall seasonality in the tropics. Nat Clim Chang 2013;3:1–5.

Flaner MG, Zender CS, Hess PG, Mahowald NM, Painter TH, Ramanathan V, et al. Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phys 2009;9:2481–97.

GrahamST, Famiglietti JS,Maidment DR. Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies. Water Resour Res 1999;35:583–7.

Gunawardhana LN, Kazama S. A water availability and low-flow analysis of the Tagliamento River discharge in Italy under changing climate conditions. Hydrol Earth Syst Sci 2012;16:1033–45.

Haddeland I, Skaugen T, Lettenmaier DP. Anthropogenic impacts on continental surface water fluxes. Geophys Res Lett 2006;33:L08406.

Hanasaki N, Kanae S, Oki T. A reservoir operation scheme for global river routingmodels. J Hydrol 2006;327:22–41.

Hänggi P. Variations in discharge volumes for hydropower generation in Switzerland. Water Resour Manage 2012;26:1231–52.

Hänggi P,Weingartner R. Inter-annual variability of runoff and climate within the Upper Rhine River basin, 1808–2007. Hydrol Sci J 2011;56:34–50.

Hidalgo HG, Das T, Dettinger MD, Cayan DR, Pierce DW, Barnett TP, et al. Detection and attribution of streamflow timing changes to climate change in the Western United States. J Climate 2009;22:3838–5385.

Hodgkins GA, Dudley RW, Huntington TG. Changes in the timing of high river flows in New England over the 20th Century. J Hydrol 2003;278:244–52.

Horton P, Schaefli B, Mezghani A, Hingray B, Musy A. Assessment of climate change impacts on alpine discharge regimes with climate model uncertainty; contributions from glaciers and snow cover to runoff from the mountains in different climates. Hydrol Processes 2006;20:2091–109.

Howat IM, Tulaczyk S. Trends in spring snowpack over a half-century of climate warming in California, USA. Ann Glaciol 2005;40:151–6.

Huntington TG, Hodgkins GA, Keim BD, Dudley RW. Changes in the proportion of precipitation occurring as snow in New England (1949–2000). J Climate 2004; 17:2626–36.

Jasper K, Calanca P, Gyalistras D, Fuhrer J. Differential impacts of climate change on the hydrology of two alpine river basins. Clim Res 2004;26:113–29.

Kaser G, Großhauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci U S A 2010;107:20223–7.

Keller F, Goyette S, Beniston M. Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in alpine terrain. Clim Change 2005;72: 299–319.

Knowles N, Dettinger MD, Cayan DR. Trends in snowfall versus rainfall in the Western United States. J Climate 2006;19:4545–59.

Krasovskaia I, Gottschalk L. River flow regimes in a changing climate. Hydrol Sci J 2002; 47:597–609.

Kriauciuniene J. Variability in temperature, precipitation and river discharge in the Baltic States. Boreal Environ Res 2012;17:150–62.

Kuntel ML, Pierce JL. Reconstructing snowmelt in Idaho's watershed using historic streamflow records. Clim Change 2010;98:155–76.

Laternser M, Schneebeli M. Long-term snow climate trends of the Swiss Alps (1931–99). Int J Climatol 2003;23:733–50.

Legrand M, Preunkert S, Schock M, Cerqueira M, Kasper-Giebl A, Afonso J, et al. Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores. J Geophys Res 2007;112:D23S11.

Lehner B, Liermann C, Revenga C, Vörösmarty C, Fekete B, Crouzet P, et al. Global Reservoir and Dam Database, Version 1 (GRanDv1): Reservoirs, Revision 01. NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/ data/collection/grand-v1, 2011.

Linde AHT, Aerts JCJH, Bakker AMR, Kwadijk JCJ. Simulating low-probability peak discharges for the Rhine basin using resampled climate modeling data. Water Resour Res 2010;46:W03512.

Lopez-Moreno JI, Garcia-Ruiz JM. Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol Sci J 2004;49:787–802.

Mayer TD, Naman SW. Streamflow response to climate as influenced by geology and elevation. J Am Water Resour Assoc 2011;47:724–38.

McCabe GJ, Clark MP. Trends and variability in snowmelt runoff in the western United States. J Hydrometeorol 2005;6:476–82.

Mesa OJ, Mifflin ER. On the relative role of hillslope and network geometry in hydrologic response. In: Gupta VK, Rodriguez-Iturbe I,Wood E, editors. Scale Problem in Hydrology; 1986. p. 181–90. D. Reidel, Norwell, Mass.

Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, et al. Impact of climate change on hydrological regimes andwater resourcesmanagement in the Rhine basin. Clim Change 2001;49:105–28.

Mitchell TD, Jones PD. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 2005;25: 693–712.

Molini A, Katul GG, Porporato A. Maximum discharge from snowmelt in a changing climate. Geophys Res Lett 2011;38:L05402.

Moore JN, Harper JT, Greenwood MC. Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Geophys Res Lett 2007;34. L16402.

Mote PW. Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys Res Lett 2003;30:1601.

Pederson GT, Gray ST, Ault T, MarshW, Fagre DB, Bunn AG, et al. Climatic controls on the snowmelt hydrology of the Northern Rocky Mountains. J Climate 2011;24:1666–87.

Pfister C, Weingartner R, Luterbacher J. Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach. Hydrol Sci J 2006; 51:966–85.

Rauscher SA, Pal JS, Diffenbaugh NS, Benedetti MM. Future changes in snowmelt-driven runoff timing over the western US. Geophys Res Lett 2008;36:L16703.

Serquet G, Marty C, Dulex J-P, Rebetez M. Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys Res Lett 2011;38: L046976.

Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E, et al. Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 2010;14:2367–82.

Sterl A. On the (in)homogeneity of reanalysis products. J Climate 2004;17:3866–73.

Stewart IT. Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Processes 2009;23:78–94.

Stewart IT, Cayan DR, Dettinger MD. Changes in snowmelt runoff timing inwestern North America under a ‘business as usual’ climate change scenario. Clim Change 2004;62: 217–32.

Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F. Detection and attribution of climate change: a regional perspective. WIREs Clim Change 2010;1: 192–211. http://dx.doi.org/10.1002/wcc.34.

Swenson SC, Lawrence DM, Lee H. Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J Adv Model Earth Syst 2012;4:M08002.

Tague C, Grant GE. Groundwater dynamicsmediate low-flow response to global warming in snow-dominated alpine regions. Water Resour Res 2009;45:W07421.

Thevenon F, Anselmetti FS, Bernasconi SM, Schwikowski M. Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J Geophys Res 2009;114:D17102.

Thorne PW, Vose RS. Reanalyses suitable for characterizing long-term trends: are they really achievable? Bull Am Meteorol Soc 2010;91:353–61.

Van der Schrier G, Efthymiadis D, Briffa KR, Jones PD. European Alpinemoisture variability for 1800–2003. Int J Climatol 2007;27:415–27.

Vanham D. The Alps under climate change: implications for water management in Europe. J Water Clim Change 2012;3:197–206.

Venema VK, Mestre O, Aguilar E, Auer I, Guijarro A, Domonkos P, et al. Benchmarking monthly homogenization algorithms. Clim Past Discuss 2011;7:2655–718.

Vincent C, Le Meur E, Six D, Funk M, Hoelzle M, Preunkert S. Very high-elevation Mont Blanc glaciated areas not affected by the 20th century climate change. J Geophys Res 2007;112:D09120.

Wetter O, Pfister C,Weingartner R, Luterbacher J, Reist T, Trosch J. The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol Sci J 2011;56:733–58.

Wilkinson GN, Rogers CE. Symbolic descriptions of factorial models for analysis of variance. Applied Statistics 1973;22:392–9.

Williams CN, MenneMJ, Thorne PW. Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J Geophys Res Atmos 2012; 117:D5. http://dx.doi.org/10.1029/2011JD016761.

Woo M, Thorne R. Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol Processes 2006;20:2129–39.

Yamanaka T, Wakiyama Y, Suzuki K. Is snowmelt runoff timing in the Japanese Alps region shifting toward earlier in the year? Hydrol Res Lett 2012;6:87–91.

Zampieri M, Serpetzoglou E, Anagnostou EN, Nikolopoulos EI, Papadopoulos A. Improving the representation of river–groundwater interactions in land surface modeling at the regional scale: observational evidence and parameterization applied in the Community Land Model. J Hydrol 2009;420:72–86.

Zampieri M, Scoccimarro E, Gualdi S. Atlantic influence on spring snowfall over the Alps in the past 150 years. Environ Res Lett 2013;8:034026.

Zanchettin D, Traverso P, Tomasino M. Po River discharge: a preliminary analysis of a 200- year time series. Clim Change 2008;89:411–33.

Zierl B, Bugmann H. Global change impacts on hydrological processes in Alpine catchments. Water Resour Res 2005;41:W02028.


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales