Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf. Wirth & al. 2013 - A

Référence bibliographique
WIRTH S. B., GLUR L., GILLI A., ANSELMETTI F. S., Holocene flood frequency across the central alps - Solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quartenary Science Reviews 80 (2013) pp. 112-128

Abstract : The frequency of large-scale heavy precipitation events in the European Alps is expected to undergo substantial changes with current climate change. Hence, knowledge about the past natural variability of floods caused by heavy precipitation constitutes important input for climate projections. We present a comprehensive Holocene (10,000 years) reconstruction of the flood frequency in the Central European Alps combining 15 lacustrine sediment records. These records provide an extensive catalog of flood deposits, which were generated by flood-induced underflows delivering terrestrial material to the lake floors. The multi-archive approach allows suppressing local weather patterns, such as thunderstorms, from the obtained climate signal. We reconstructed mainly late spring to fall events since ice cover and precipitation in form of snow in winter at high-altitude study sites do inhibit the generation of flood layers. We found that flood frequency was higher during cool periods, coinciding with lows in solar activity. In addition, flood occurrence shows periodicities that are also observed in reconstructions of solar activity from 14C and 10Be records (2500e3000, 900e1200, as well as of about 710, 500, 350, 208 (Suess cycle), 150, 104 and 87 (Gleissberg cycle) years). As atmospheric mechanism, we propose an expansion/shrinking of the Hadley cell with increasing/decreasing air temperature, causing dry/wet conditions in Central Europe during phases of high/low solar activity. Furthermore, differences between the flood patterns from the Northern Alps and the Southern Alps indicate changes in North Atlantic circulation. Enhanced flood occurrence in the South compared to the North suggests a pronounced southward position of theWesterlies and/or blocking over the northern North Atlantic, hence resembling a negative NAO state (most distinct from 4.2 to 2.4 kyr BP and during the Little Ice Age). South-Alpine flood activity therefore provides a qualitative record of variations in a paleo-NAO pattern during the Holocene. Additionally, increased South Alpine flood activity contrasts to low precipitation in tropical Central America (Cariaco Basin) on the Holocene and centennial time scale. This observation is consistent with a Holocene southward migration of the Atlantic circulation system, and hence of the ITCZ, driven by decreasing summer insolation in the Northern hemisphere, as well as with shorter-term fluctuations probably driven by solar activity.

Mots-clés
 Alps, Lake sediments, Heavy precipitation, flood reconstruction, solar forcing, NAO, North Altantic

Organismes / Contact

Auteurs/authors :

  • WIRTH S. B., Geological Institute, ETH Zurich, Zurich, Switzerland
  • GLUR L., Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
  • GILLI A., Geological Institute, ETH Zurich, Zurich, Switzerland
  • ANSELMETTI F. S., Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland & Institute of Geological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
       

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
  Alpes Centrales Européennes        

(1) - Modifications des paramètres atmosphériques
Reconstitutions
 
Observations

 

Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)



(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 

1)Investigating lake sediments is a powerful tool to track the occurrence of flood events in the past. Yet, working with multiple lake records is important in an orographic setting like the Alps, in which local as well as large-scale weather patterns contribute to the climate signal. Thus, the used multi-archive approach enabled us to reconstruct large-scale precipitation events and to suppress spatially limited and temporally scattered convective events such as thunderstorms.

2)An initial assumption that altitude differences produce a seasonality signal based on ice cover on high-altitude lakes in winter was not fulfilled. Hence, we conclude that most of the recorded floods occurred in summer and autumn, which is confirmed by flood reconstructions covering the past 500 years using instrumental and historic data as well as by varved lake sediments from the N- and S-Alps.

3)The flood records of the single lakes as well as the stacked flood records for the N- and S-Alps show centennial- to millennial-scale fluctuations in flood activity, often varying by more than 50% within only decades.

4)Periodicities found in the stacked records, i.e. approximately 2000e3000, 900e1200, 740, 500, 350, 200e250, 150, 100 and 87 years, strongly correspond to solar cycles. Indeed, high flood activity correlates to lows in solar activity, as well as to Holocene cold events and to global/alpine glacier advances, all together implying that flood events occur more often during cool periods in the Central Alps. As overall atmospheric mechanism, we propose a widening/shrinking of the Hadley circulation cell with high/low solar activity, bringing dry/wet conditions to Central Europe during summer time.

5)Differing flood activities in the N-Alps versus the S-Alps are probably provoked by changes in the meridional position of the Westerlies over the North Atlantic. Most conspicuous is the period between 4.2 and 2.4 kyr BP, which is regarded as cool on both sides of the Alps but with intense flooding only in the SAlps. For this special period, we propose that the circulation system has an exceptionally southerly position and/or blocking occurs over the northern North Atlantic. This enables strong winds to enter the Mediterranean Sea and to generate precipitation in the Southern Alpine realm.

6) In addition, the good agreement between S-Alpine flood activity, ssNa from the GISP2 ice core (Mayewski et al., 1997), Holocene precipitation reconstructions from the Cariaco basin (negative relation) (Haug et al., 2001) and from the Northeastern United States (Noren et al., 2002), as well as NAO reconstructions (Trouet et al., 2009; Olsen et al., 2012), indicates that the S-Alpine flood record is sensitive to record variations in North Atlantic circulation, and hence provides evidence for long-term variations in a paleo-NAO pattern.

Observations

 

 

Modélisations
 
Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)

 


(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations
 
Modélisations
 
Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 
 

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments, Basin Analysis, Coring, and Chronological Techniques, vol. 1. Kluwer Academic Publishers, Dordrecht, pp. 171e203.

Arnaud, F., Lignier, V., Revel, M., Desmet, M., Beck, C., Pourchet, M., Charlet, F., Trentesaux, A., Tribovillard, N., 2002. Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NW Alps). Terra Nova 14, 225e232.

Arnaud, F., Révillon, S., Debret, M., Revel, M., Chapron, E., Jacob, J., Giguet-Covex, C., Poulenard, J., Magny, M., 2012. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quat. Sci. Rev. 51, 81e92. Atlas of Switzerland, 2010. Atlas of Switzerland, Version 3. Swiss Federal Office of Topography, Wabern, Switzerland.

Bakke, J., Lie, Ø., Dahl, S.O., Nesje, A., Bjune, A.E., 2008. Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Glob. Planet. Change 60, 28e41.

Beck, C., 2009. Late Quaternary lacustrine paleo-seismic archives in north-western Alps: examples of earthquake-origin assessment of sedimentary disturbances. Earth-Sci. Rev. 96, 327e344.

Berg, P., Haerter, J.O., Thejll, P., Piani, C., Hagemann, S., Christensen, J.H., 2009. Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res. 114, D18102.

Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat. Geochronol. 5, 512e518.

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science 294, 2130e2136.

Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., 1997. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science 278, 1257e1266. Broccoli, A.J., Dahl, K.A., Stouffer, R.J., 2006. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. 33, L01702.

Büntgen, U., Tegel,W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J.O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., Esper, J., 2011. 2500 years of European climate variability and human susceptibility. Science 331, 578e582. CH2011, 2011. Swiss Climate Change Scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, Switzerland, Zurich, Switzerland, p. 88.

Christensen, J., Christensen, O., 2007. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change 81, 7e30.

Czymzik, M., Brauer, A., Dulski, P., Plessen, B., Naumann, R., von Grafenstein, U., Scheffler, R., 2013. Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany). Quat. Sci. Rev. 61, 96e110.

Czymzik, M., Dulski, P., Plessen, B., von Grafenstein, U., Naumann, R., Brauer, A., 2010. A 450-year record of spring/summer flood layers in annually laminated sediments from Lake Ammersee (Southern Germany). Water Resour. Res. 46. http://dx.doi.org/10.1029/2009WR008957.

Dawson, A.G., Elliott, L., Mayewski, P., Lockett, P., Noone, S., Hickey, K., Holt, T., Wadhams, P., Foster, I., 2003. Late-Holocene North Atlantic climate ‘seesaws’, storminess changes and Greenland ice sheet (GISP2) palaeoclimates. Holocene 13, 381e392.

Debret, M., Chapron, E., Desmet, M., Rolland-Revel, M., Magand, O., Trentesaux, A., Bout-Roumazeille, V., Nomade, J., Arnaud, F., 2010. North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France. Quat. Sci. Rev. 29, 2185e2200.

Debret, M., Sebag, D., Crosta, X., Massei, N., Petit, J.R., Chapron, E., Bout- Roumazeilles, V., 2009. Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quat. Sci. Rev. 28, 2675e2688.

Delworth, T.L., Dixon, K.W., 2000. Implications of the recent trend in the Arctic/ North Atlantic Oscillation for the north Atlantic thermohaline circulation. J. Clim. 13, 3721e3727.

Denton, G.H., Karlén, W., 1973. Holocene climatic variations e their pattern and possible cause. Quat. Res. 3, 155e205.

Finkel, R.C., Nishiizumi, K., 1997. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3e40 ka. J. Geophys. Res. 102, 26699e26706.

Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the Indian monsoon recorded in a Stalagmite from southern Oman. Science 300, 1737e1739.

Frei, C., Schär, C., 1998. A precipitation climatology of the Alps from high-resolution rain-gauge observation. Int. J. Climatol. 18, 873e900.

Frei, C., Schöll, R., Fukutome, S., Schmidli, J., Vidale, P.L., 2006. Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J. Geophys. Res. 111, D06105. http://dx.doi.org/10.1029/ 2005JD005965.

Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P., 2002. Advanced spectral methods for climatic time series. Rev. Geophys. 40. http://dx.doi.org/ 10.1029/2001RG000092.

Giguet-Covex, C., Arnaud, F., Enters, D., Poulenard, J., Millet, L., Francus, P., David, F., Rey, P.-J., Wilhelm, B., Delannoy, J.-J., 2012. Frequency and intensity of highaltitude floods over the last 3.5 ka in northwestern French Alps (Lake Anterne). Quat. Res. 77, 12e22

Giguet-Covex, C., Arnaud, F., Poulenard, J., Disnar, J.-R., Delhon, C., Francus, P., David, F., Enters, D., Rey, P.-J., Delannoy, J.-J., 2011. Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): the role of climate and human activities. Holocene 21, 651e665.

Gilli, A., Anselmetti, F.S., Glur, L., Wirth, S.B., 2013. Lake sediments as archives of recurrence rates and intensities of past flood events. In: Schneuwly- Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (Eds.), Dating Torrential Processes on Fans and Cones e Methods and Their Application for Hazard and Risk Assessment, Advances in Global Change Research, vol. 47. Springer, pp. 225e 242. http://dx.doi.org/10.1007/978-94-007-4336-6_15.

Girardclos, S., Schmidt, O.T., Sturm, M., Ariztegui, D., Pugin, A., Anselmetti, F.S., 2007. The 1996 AD delta collapse and large turbidite in Lake Brienz. Mar. Geol. 241, 137e154.

Giraudeau, J., Grelaud, M., Solignac, S., Andrews, J.T., Moros, M., Jansen, E., 2010. Millennial-scale variability in Atlantic water advection to the Nordic Seas derived from Holocene coccolith concentration records. Quat. Sci. Rev. 29, 1276e1287.

Glur, L., 2013. Holocene Flood Variability and Glacier Fluctuations in the Central Alps Revealed by Lacustrine Sediments. PhD thesis. ETH Zurich, p.167. Diss ETH #21027.

Graham, N., Ammann, C., Fleitmann, D., Cobb, K., Luterbacher, J., 2011. Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim. Dyn. 37, 1217e1245.

Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White,W., 2010. Solar influences on climate. Rev. Geophys. 48, RG4001.

Haigh, J.D., 2003. The effects of solar variability on the Earth’s climate. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 361, 95e111.

Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Röhl, U., 2001. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304e1308.

Heiri, O., Lotter, A.F., Hausmann, S., Kienast, F., 2003. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13, 477e484.

Hilker, N., Badoux, A., Hegg, C., 2009. The Swiss flood and landslide damage database 1972-2007. Nat. Hazards Earth Syst. Sci. 9, 913e925.

Hurrell, J.W., Van Loon, H., 1997. Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36, 301e326.

IPCC, 2012. In: Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., Tignor, M., Midgley, P.M. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, p. 582.

Lamb, M.P., Mohrig, D., 2009. Do hyperpycnal-flow deposits record river-flood dynamics? Geology 37, 10567e11070.

Lamoureux, S., 2000. Five centuries of interannual sediment yield and rainfallinduced erosion in the Canadian High Arctic recorded in lacustrine varves. Water Resour. Res. 36, 309e318.

Lamoureux, S.F., 1994. Embedding unfrozen lake sediments for thin section preparation. J. Paleolimnol. 10, 141e146.

Lautensach, H., 1914. Die kleinen Seebecken der Tessiner Alpen. Zeitsch. Gletsch. IX. Liu, Z., Harrison, S.P., Kutzbach, J., Otto-Bliesner, B., 2004. Global monsoons in the mid-Holocene and oceanic feedback. Clim. Dynamics 22, 157e182.

Lu, J., Vecchi, G.A., Reichler, T., 2007. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, L06805.

Macklin, M.G., Johnstone, E., Lewin, J., 2005. Pervasive and long-term forcing of Holocene river instability and flooding in Great Britain by centennial-scale climate change. Holocene 15, 937e943.

Magny, M., Bossuet, G., Ruffaldi, P., Leroux, A., Mouthon, J., 2011. Orbital imprint on Holocene palaeohydrological variations in west-central Europe as reflected by lake-level changes at Cerin (Jura Mountains, eastern France). J. Quat. Sci. 26, 171e177.

Magny, M., Joannin, S., Galop, D., Vannière, B., Haas, J.N., Bassetti, M., Bellintani, P., Scandolari, R., Desmet, M., 2012. Holocene palaeohydrological changes in the northern Mediterranean borderlands as reflected by the lake-level record of Lake Ledro, northeastern Italy. Quat. Res. 77, 382e396.

Maher, B.A., 2008. Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment. Holocene 18, 861e866.

Mann, M.E., 2004. On smoothing potentially non-stationary climate time series. Geophys. Res. Lett. 31, L07214.

Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Clim. Change 33, 409e445.

Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval climate Anomaly. Science 326, 1256e1260.

Marchal, O., Cacho, I., Stocker, T.F., Grimalt, J.O., Calvo, E., Martrat, B., Shackleton, N., Vautravers, M., Cortijo, E., van Kreveld, S., Andersson, C., Koç, N., Chapman, M., Sbaffi, L., Duplessy, J.-C., Sarnthein, M., Turon, J.-L., Duprat, J., Jansen, E., 2002. Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat. Sci. Rev. 21, 455e483.

Martin-Puertas, C., Matthes, K., Brauer, A., Muscheler, R., Hansen, F., Petrick, C., Aldahan, A., Possnert, G., van Geel, B., 2012. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397e401.

Mayewski, P.A., Meeker, D.L., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., Prentice, M., 1997. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. 102, 26,345e26,366.

Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, D.L., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., 2004. Holocene climate variability. Quat. Res. 62, 243e255.

Meeker, D.L., Mayewski, P.A., 2002. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia. Holocene 12, 257e266

Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289e302.

Moreno, A., Valero-Garcés, B.L., González-Sampériz, P., Rico, M., 2008. Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J. Paleolimnol. 40, 943e961.

Mueller, A.D., Islebe, G.A., Hillesheim, M.B., Grzesik, D.A., Anselmetti, F.S., Ariztegui, D., Brenner, M., Curtis, J.H., Hodell, D.A., Venz, K.A., 2009. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat. Res. 71, 133e141.

Mulder, T., Chapron, E., 2011. Flood deposits in Continental and Marine environments: character and significance. In: Slatt, R.M., Zavala, C. (Eds.), Sediment Transfer from Shelf to Deep Water - Revisiting the Delivery System, AAPG Studies in Geology, 61, pp. 1e30.

Mulder, T., Syvitski, J.P.M., Migeon, S., Faugères, J.-C., Savoye, B., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar. Petrol. Geol. 20, 861e882.

Nesje, A., Dahl, S.O., Thun, T., Nordli, Ø., 2008. The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim. Dyn. 30, 789e801.

Noren, A.J., Bierman, P.R., Steig, E.J., Lini, A., Southon, J., 2002. Millenial-scale storminess variability in the northeastern United States during the Holocene epoch. Nature 419, 821e824

Obrochta, S.P., Miyahara, H., Yokoyama, Y., Crowley, T.J., 2012. A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609. Quat. Sci. Rev. 55, 23e33

Olsen, J., Anderson, N.J., Knudsen, M.F., 2012. Variability of the North Atlantic Oscillation over the past 5,200 years. Nat. Geosci. 5, 808e812.

Parris, A.S., Bierman, P.R., Noren, A.J., Prins, M.A., Lini, A., 2010. Holocene paleostorms identified by particle size signatures in lake sediments from the northeastern United States. J. Paleolimnol. 43, 29e49.

Pfister, C., 2009. Die “Katastrophenlücke” des 20. Jahrhunderts und der Verlust traditionalen Risikobewusstseins. GAIA 18, 239e246.

Polonsky, A., Bardin, M., 2012. Variability of Mediterranean Cyclonic Activity Associated with the NAO and AMO. Abstract for the EGU General Assembly 2012.

Rajczak, J., Pall, P., Schär, C., 2013. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J. Geophys. Res.: Atmos. 118, 3610e3626. http://dx.doi.org/10.1002/jgrd.50297.

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., 2009. IntCal09 and Marine09 Radiocarbon Age calibration curves, 0-50,000 years cal BP. Radiocarbon 51, 1111e1150.

Richter, T.O., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de Stigter, H.C., de Haas, H., van Weering, T.C.E., 2006. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. In: Rothwell, R.G. (Ed.), New Techniques in Sediment Core Analysis, Geological Society, London, Special Publications, vol. 267, pp. 39e50.

Röthlisberger, G., 1991. Chronik der Unwetterschäden in der Schweiz. In: Berichte der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, vol. 330. Birmensdorf, 122 pp.

Schimmelpfennig, I., Schaefer, J.M., Akçar, N., Ivy-Ochs, S., Finkel, R.C., Schlüchter, C., 2012. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology. http://dx.doi.org/10.1130/G33169.1.

Schmocker-Fackel, P., Naef, F., 2010a. Changes in flood frequencies in Switzerland since 1500. Hydrol. Earth Syst. Sci. 14, 1581e1594.

Schmocker-Fackel, P., Naef, F., 2010b. More frequent flooding? Changes in flood frequency in Switzerland since 1850. J. Hydrol. 381, 1e8.

Schneider, R., Tobolski, K., 1985. Lago di Ganna - late-glacial and Holocene environments of a lake in the Southern Alps. Dissert. Botan. 87, 229e271.

Schnurrenberger, D., Russell, J., Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. J. Paleolimnol. 29, 141e154.

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., Teuling, A.J., 2010. Investigating soil moistureeclimate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125e161.

Sheffer, N.A., Enzel, Y., Benito, G., Grodek, T., Poart, N., Lang, M., Naulet, R., Coeur, D., 2003. Paleofloods and historical floods of the Ardèche River, France. Water Resour. Res. 39. http://dx.doi.org/10.1029/2003WR002468.

Siegenthaler, C., Sturm, M., 1991. Die Häufigkeit von Ablagerungen extremer Reuss- Hochwasser. Die Sedimentationsgeschichte im Urnersee seit dem Mittelalter. In: Mitt. Bundesamt f. Wasserwirtschaft, pp. 127e139.

Simonneau, A., Chapron, E., Vannière, B., Wirth, S.B., Gilli, A., Di Giovanni, C., Anselmetti, F.S., Desmet, M., Magny, M., 2013. Mass-movement and floodinduced deposits in Lake Ledro, southern Alps, Italy: implications for Holocene palaeohydrology and natural hazards. Clim. Past 9, 825e840

St-Onge, G., Long, B.F., 2009. CAT-scan analysis of sedimentary sequences: an ultrahigh-resolution paleocliamtic tool. Eng. Geol. 103, 127e133. Stapfer, A., 1991. Pollenanalytische Untersuchungen im Val Piora (Tessin). Geogr. Helv. 46, 156e164.

Steinhilber, F., Beer, J., Fröhlich, C., 2009. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704. http://dx.doi.org/10.1029/2009GL040142.

Støren, E.N., Kolstad, E.W., Paasche, Ø., 2012. Linking past flood frequencies in Norway to regional atmospheric circulation anomalies. J. Quat. Sci. 27, 71e 80.

Strasser, M., Stegmann, S., Bussmann, F., Anselmetti, F.S., Rick, B., Kopf, A., 2007. Quanitifying subaqueous slope stability during seismic shaking: lake Lucerne as model for ocean margins. Mar. Geol. 240, 77e97.

Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., Spurk, M., 1998. INTCAL98 radiocarbon age calibration, 24.000-0 cal BP. Radiocarbon 40, 1041e1083.

Thorndycraft, V.R., Benito, G., Rico, M., Sopeña, A., Sánchez-Moya, Y., Casas, A., 2005. A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain. J. Hydrol. 313, 16e31.

Timmermann, A., An, S.I., Krebs, U., Goosse, H., 2005. ENSO suppression due to weakening of the north Atlantic thermohaline circulation. J. Clim. 18, 3122e3139. Toggweiler, J.R., 2009. Shifting westerlies. Science 323, 1434e1435.

Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61e78. Trenberth, K.E., 2011. Changes in precipitation with climate change. Clim. Res. 47, 123e138.

Trigo, R., Xoplaki, E., Zorita, E., Luterbacher, J., Krichak, S.O., Alpert, P., Jacobeit, J., Sáenz, J., Fernández, J., González-Rouco, F., Garcia-Herrera, R., Rodo, X., Brunetti, M., Nanni, T., Maugeri, M., Türkes, M., Gimeno, L., Ribera, P., Brunet, M., Trigo, I.F., Crepon, M., Mariotti, A., 2006. Relations between variability in the Mediterranean region and mid-latitude variability. In: Lionello, P., Malanotta- Rizzoli, P., Boscolo, R. (Eds.), Mediterranean Climate Variability. Elsevier, pp. 179e226.

Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., Frank, D.C., 2009. Persistent positive north Atlantic Oscillation mode dominated the Medieval climate Anomaly. Science 324, 78e80.

Trouet, V., Scourse, J.D., Raible, C.C., 2012. North Atlantic storminess and Atlantic meridional overturning circulation during the last millennium: reconciling contradictory proxy records of NAO variability. Glob. Planet. Change 84e85, 48e55.

Vannière, B., Magny, M., Joannin, S., Simonneau, A., Wirth, S.B., Hamann, Y., Chapron, E., Gilli, A., Desmet, M., Anselmetti, F.S., 2013. Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy. Clim. Past 9, 1193e1209.

Verschuren, D., Laird, K.R., Cumming, B.F., 2000. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature 403, 410e414.

Viau, A.E., Gajewski, K., Sawada, M.C., Fines, P., 2006. Millennial-scale temperature variations in North America during the Holocene. J. Geophys. Res. 111, D09102.

Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., 2005. The Holocene Asian monsoon: links to solar changes and north Atlantic climate. Science 308, 854e857.

Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Fortunat, J., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., Widmann, M., 2008. Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791e1828.

Wanner, H., Brönnimann, S., Casty, C., Gyalistras, D., Luterbacher, J., Schmutz, C., Stephenson, D., Xoplaki, E., 2001. North Atlantic Oscillation e concepts and studies. Surv. Geophys. 22, 321e381.

Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure and origin of Holocene cold events. Quat. Sci. Rev. 30, 3109e3123.

Wilhelm, B., Arnaud, F., Sabatier, P., Crouzet, C., Brisset, E., Chaumillon, E., Disnar, J.- R., Guiter, F., Malet, E., Reyss, J.-L., Tachikawa, K., Bard, E., Delannoy, J.-J., 2012. 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quat. Res. 78, 1e12.

Wirth, S.B., Gilli, A., Simonneau, A., Ariztegui, D., Vanniere, B., Glur, L., Chapron, E., Magny, M., Anselmetti, F.S., 2013. A 2000-year long seasonal record of floods in the southern European Alps. Geophys. Res. Lett. 40, 4025e4029. http:// dx.doi.org/10.1002/grl.50741.

Wirth, S.B., Girardclos, S., Rellstab, C., Anselmetti, F.S., 2011. The sedimentary response to a pioneer geo-engineering project: tracking the Kander River deviation in the sediments of Lake Thun (Switzerland). Sedimentology 58, 1737e1761.

Wirth, S.B., 2013. The Holocene Flood History of the Central Alps Reconstructed from Lacustrine Sediments: Frequency, Intensity and Controlling Climate Factors. PhD thesis. ETH Zurich, p. 179. Diss ETH #20860.

Woollings, T., Gregory, J.M., Pinto, J.G., Reyers, M., Brayshaw, D.J., 2012. Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat. Geosci. 5, 313e317.

Yu, F., Zong, Y., Lloyd, J.M., Leng, M.J., Switzer, A.D., Yim, W.W.-S., Huan, G., 2011. Mid-Holocene variability of the East Asian monsoon based on bulk organic d13C and C/N records from the Pearl River estuary, southern China. Holocene 22, 705e715.


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales