Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf.

Référence bibliographique
C. VINCENT, A. FISCHER, C. MAYER, A. BAUDER, S. P. GALOS, M. FUNK, E. THIBERT, D. SIX, L. BRAUN, and M. HUSS (2017), Common climatic signal from glaciers in the European Alps over the last 50 years, Geophys. Res. Lett., 44, doi:10.1002/ 2016GL072094.

Abstract : Conventional glacier-wide mass balances are commonly used to study the effect of climate forcing on glacier melt. Unfortunately, the glacier-wide mass balances are also influenced by the glacier’s dynamic response. Investigations on the effects of climate forcing on glaciers can be largely improved by analyzing point mass balances. Using a statistical model, we have found that 52% of the year-to-year deviations in the point mass balances of six glaciers distributed across the entire European Alps can be attributed to a common variability. Point mass balance changes reveal remarkable regional consistencies reaching 80% for glaciers less than 10 km apart. Compared to the steady state conditions of the 1962–1982 period, the surface mass balance changes are0.85m water equivalent (w.e.) a1 for 1983–2002 and 1.63 mw.e.a 1 for 2003–2013. This indicates a clear and regionally consistent acceleration of mass loss over recent decades over the entire European Alps.

Mots-clés
 

Organismes / Contact

Auteurs / Authors :

  • C. VINCENT, Université Grenoble Alpes, CNRS, Grenoble, France
  • A. FISCHER, Mountain Research, Austrian Academy of Sciences, Institute of Interdisciplinary, Innsbruck, Austria
  • C. MAYER, Commission for Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, Germany
  • A. BAUDER, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland
  • S.P. GALOS, Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
  • M. FUNK, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland
  • E. THIBERT, IRSTEA, Université Grenoble Alpes, St-Martin d’Hères, France
  • D. SIX, Université Grenoble Alpes, CNRS, Grenoble, France
  • L. BRAUN, Commission for Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, Germany
  • M. HUSS, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, Zürich, Switzerland & Department of Geosciences, University of Fribourg, Fribourg, Switzerland

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
  glaciers    

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
Alpes Alpes       1962-2013

(1) - Modifications des paramètres atmosphériques
Reconstitutions
 
Observations

 

Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)



(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 
Observations

 The average glacier-wide balance of the six glaciers differs between the glaciers, from1.14mw.e. a1 for Sarennes to0.38mw.e. a1 for Silvretta over the common 1965–2014 period. Note also that the difference in cumulative mass balance between Saint Sorlin and Sarennes is large even though these glaciers lie only 3 km apart.
The cumulative centered glacier-wide balances reveal large differences, in particular between Saint Sorlin or Sarennes and the other glaciers (Figure 2c).

The glacier-to-glacier correlation improves when using point mass balance instead of glacier-wide balances (Table S2). In particular, the signals of the Saint Sorlin and Sarennes surface mass balances are much closer to those of the other glaciers in comparison to the centered mass balance calculated from the average glacier-wide balances (Figure 2).
On the basis of these trends, the explained variance of two glaciers located 400 km apart was improved from 41 to 52% on the average when point mass balances were used instead of glacier-wide balances.

The point mass balance deviations (Figure 4b) reveal a high regional consistency if we discard the Sarennes series. Signs of disintegration have recently been documented for Sarennes [Thibert et al., 2013] and might be responsible to the stronger negative trend compared to the other five studied glaciers in the European Alps. Indeed, the reduction in surface area of Sarennes could lead to increased longwave heat input from exposed rock surrounding the ice.

 

Le bilan de masse global moyen des 6 glaciers étudiés varie entre 1.14 m.e.e.a-1 pour Sarennes et 0.38m.e.e.a-1 pour Silvretta sur la période 1965-2014. Il est également intéressant de noter que la différence entre le bilan de masse cumulé des glaciers de Saint-Sorlin et de Sarennes est importante, malgré un éloignement de seulement 3km.
Les bilans de masse centrés mettent en evidence d’importante differences, en particulier entre les glaciers de Saint-Sorlin ou de Sarennes et les autres glaciers étudiés. (Figure 2C).

La correspondence entre les glaciers s’améliore lorsque l’on utilise le bilan de masse par point (point mass balance) au lieu du bilan de masse global (Table S2).On note en particulier une corrélation plus importante entre les signaux des bilans de masse de surface des glaciers de Saint-Sorlin et de Sarennes et ceux des autres glaciers étudiés qu’à travers l’étude des bilans de masse centrés calculés à partir de la moyenne des bilans de masse globaux (Figure 2).
On obtient ainsi, en utilisant le bilan de masse par point au lieu du bilan de masse global, une variation expliquée, entre deux glaciers situés à 400km l’un de l’autre, qui passe de 41 à 52%.

Les déviations des bilans de masse ponctuels mettent en valeur une forte cohérence régionale, si on ne tient pas compte des séries provenant du glacier de Sarennes. Des signes de désintégrations ont récemment été documentés pour le glacier de Sarennes [Thibert et al., 2013] et pourraient être à l’origine d’une tendance négative plus importante que celle observée pour les 5 autres glaciers étudiés. En effet, la diminution de surface du glacier de Sarennes pourrait être à l’origine d’une augmentation des radiations absorbées en raison des quantités importantes de matériel sédimentaire qui entourent la glace.

 

Modélisations
 
Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 

 


(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations
 
Modélisations
 
Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 
 

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

Abermann, J., M. Kuhn, and A. Fischer (2011), Climatic controls of glacier distribution and glacier changes in Austria, Ann. Glaciol., 52, 83–90.

Bauder, A., M. Funk, and M. Huss (2007), Ice volume changes of selected glaciers in the Swiss Alps since the end of the 19th century, Ann. Glaciol., 46, 145–150.

Berthier, E., and C. Vincent (2012), Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008, J. Glaciol., 58(209), 501–512, doi:10.3189/2012JoG11J083.

Berthier, E., et al. (2014), Glacier topography and elevation changes from Pléiades sub-meter stereo images, Cryosphere, 8, 2275–2291, doi:10.5194/tc-8-2275-2014.

Braithwaite, R. J., S. C. B. Raper, and R. Candela (2013), Recent changes (1991–2010) in glacier mass balance and air temperature in the European Alps, Ann. Glaciol., 54(63), 139–146, doi:10.3189/2013AoG63A285.

Carturan, L., C. Baroni, M. Brunetti, A. Carton, G. Dalla Fontana, M. C. Salvatore, T. Zanoner, and G. Zuecco (2016), Analysis of the mass balance time series of glaciers in the Italian Alps, Cryosphere, 10, 695–712, doi:10.5194/tc-10-695-2016.

Cogley, J. G., and W. P. Adams (1998), Mass balance of glaciers other than the ice sheets, J. Glaciol., 44(147), 315–325.

Cogley, J. G., et al. (2011), Glossary of Glacier Mass Balance and Related Terms, UNESCO-IHP, Paris.

Eckert, N., H. Baya, E. Thibert, and C. Vincent (2011), Extracting the temporal signal from a winter and summer mass-balance series: Application to a six-decade record at Glacier de Sarennes, French Alps, J. Glaciol., 57, 134–150.

Fischer, A. (2010), Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner, Global Planet. Change, 71(1–2), 13–26.

Fischer, M., M. Huss, and M. Hoelzle (2015), Surface elevation and mass changes of all Swiss glaciers 1980–2010, Cryosphere, 9, 525–540, doi:10.5194/tc-9-525-2015.

Fyffe, C. L., T. D. Reud, B. W. Brock, M. P. Kirbride, G. Diolaiuti, C. Smiraglia, and F. A. Fiotri (2014), A distributed energy-balance melt model of an alpine debris-covered glacier, J. Glaciol., 60, 587–602.

Gabbi, J., M. Carenzo, F. Pellicciotti, A. Bauder, and M. Funk (2014), A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response, J. Glaciol., 60(224), 1140–1154, doi:10.3189/2014JoG14J011.

Gardelle J., E. Berthier, Y. Arnaud, and A. Kääb (2013), Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999– 2011, Cryosphere, 7, 1263–1286, doi:10.5194/tc-6257-1263-2013.

Gardner, A. S., et al. (2013), A reconciled estimate of glacier contributions to seal level rise: 2003–2009, Science, 340(6134), 852–857, doi:10.1126/science.1234532.

Hock, R., P. Jansson, and L. Braun (2005), Modelling the response of mountain glacier discharge to climate warming, in Global Change and Mountain Regions—A State of Knowledge Overview, edited by U. M. Huber, M. A. Reasoner, and H. Bugmann, pp. 243–252, Springer, Dordrecht, Netherlands.

Huss, M. (2011), Present and future contribution of glaciers to runoff from macroscale drainage basins in Europe, Water Resour. Res., 47, WO7511, doi:10.1029/2010WR010299.

Huss, M. (2012), Extrapolating glacier mass balance to the mountain-range scale: The European Alps 1900–2010, Cryosphere, 6, 713–727, doi:10.5194/tc-6-713-2012.

Huss, M., R. Hock, A. Bauder, and M. Funk (2010), 100-year mass changes in the Swiss Alps linked to the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 37, L10501, doi:10.1029/2010GL042616.

Huss, M., R. Hock, A. Bauder, and M. Funk (2012), Conventional versus reference-surface mass balance, J. Glaciol., 58, 278–286.

Huss, M., L. Dhulst, and A. Bauder (2015), New long-term mass-balance series for the Swiss Alps, J. Glaciol., 61(227), 551–562, doi:10.3189/ 2015JoG15J015.

Immerzeel, W. W., F. Pellicciotti, and M. F. P. Bierkens (2013), Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds, Nat. Geosci., 6(9), 742–745, doi:10.1038/NGEO1896.

IPCC (2013), Climate change 2013, in The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., Cambridge Univ. Press, Cambridge, U. K., and New York.

Kaser, G., J. G. Cogley, M. B. Dyurgerov, M. F. Meier, and A. Ohmura (2006), Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004, Geophys. Res. Lett., 33, L19501, doi:10.1029/2006GL027511.

Kaser, G., M. Grosshauser, and B. Marzeion (2010), Contribution potential of glaciers to water availability in different climate regimes, Proc. Natl. Acad. Sci. U.S.A., 107(47), 20,223–20,227.

Letreguilly, A., and L. Reynaud (1990), Space and time distribution of glacier mass balance in the northern hemisphere, Arct. Alp. Res., 22, 43–50.

Lliboutry, L. (1974), Multivariate statistical analysis of glacier annual balances, J. Glaciol., 13(69), 371–392.

Machguth, H., F. Paul, S. Kotlarski, and M. Hoelzle (2009), Calculating distributed glacier mass balance for the Swiss Alps from regional climate model output: A methodical description and interpretation of the results, J. Geophys. Res., 114, D19106, doi:10.1029/2009JD011775.

Marzeion, B., J. Graham Cogley, K. Richter, and D. Parkes (2014), Attribution of global glacier mass loss to anthropogenic and natural causes, Science, 345(6199), 919–921, doi:10.1126/science1254702.

Mayer, C., A. Lambrecht, U. Blumthaler, and O. Eisen (2001), Vermessung und Eisdynamik des Vernagtferners, Ötztaler Alpen, Zeitschrift für Gletscherkunde und Glazialgeologie, 45(46), 259–280.

Oerlemans, J., R. H. Giesen, and M. R. van den Broeke (2009), Retreating alpine glaciers: Increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland), J. Glaciol., 5(192), 729–736.

Paul, F., and W. Haeberli (2008), Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models, Geophys. Res. Lett., 35, L21502, 2008, doi:10.1029/2008GL034718.

Rabatel, A., J. P. Dedieu, and C. Vincent (2005), Can remote sensing data contribute for equilibrium line altitude and mass balance time series measurements? Validation on three French glaciers; 1994–2002, J. Glaciol., 51(175), 539–546.

Rasmussen, L. A. (2004), Altitude variation of glacier mass balance in Scandinavia, Geophys. Res. Lett., 31, L13401, doi:10.1029/2004GL020273.

Rasmussen, L. A., and L. M. Andreassen (2005), Seasonal mass balance gradients in Norway, J. Glaciol., 51, 601–606.

Reveillet, M., C. Vincent, D. Six, and A. Rabatel (2017), Which empirical model is best suited to simulated glacier mass balances?, J. Glaciol., 63(237), 39–54, doi:10.1017/jog.2016.110.

Six, D. (2000), Analyse statistique des distributions spatiales et temporelles des series de bilans de masse des glaciers et des calottes polaires de l’hémisphère Nord, Thesis, Univ. of Joseph Fourier, Grenoble. Thibert, E., and C. Vincent (2009), Best possible estimation of mass balance combining glaciological and geodetic method, Ann. Glaciol., 50, 112–118.

Thibert, E., R. Blanc, C. Vincent, and N. Eckert (2008), Glaciological and volumetric mass balance measurements: Error analysis over 51 years for Glacier de Sarennes, French Alps, J. Glaciol., 54(186), 522–532.

Thibert, E., N. Eckert, and C. Vincent (2013), Climatic drivers of seasonal glacier mass balances: An analysis of 6 decades at Glacier de Sarennes (French Alps), Cryosphere, 7, 47–66, doi:10.5194/tc-7-47-2013.

Vincent, C. (2002), Influence of climate change over the 20th Century on four French glacier mass balances, J. Geophys. Res., 107(D19), ACL 4-1-ACL 4-12, doi:10.1029/2001JD000832.

Vincent, C., M. Vallon, L. Reynaud, and E. Le Meur (2000), Dynamic behaviour analysis of glacier de Saint Sorlin, France, from 40 years of observations, 1957–1997, J. Glaciol., 46(154), 499–506.

Vincent, C., G. Kappenberger, F. Valla, A. Bauder, M. Funk, and E. Le Meur (2004), Ice ablation as evidence of climate change in the Alps over the 20th century, J. Geophys. Res., 109, D10104, doi:10.1029/2003JD003857.

Vincent, C., E. Le Meur, D. Six, and M. Funk (2005), Solving the paradox of the end of the Little Ice Age in the Alps, Geophys. Res. Lett., 32, L09706, doi:10.1029/2005GL022552.

Vincent, C., A. Soruco, D. Six, and E. Le Meur (2009), Glacier thickening and decay analysis from fifty years of glaciological observations performed on Argentiére glacier, Mont-Blanc area, France, Ann. Glaciol., 50, 73–79. WGMS (2015), Global Glacier Change Bulletin No. 1 (2012–2013), edited by M. Zemp et al., pp. 230, ICSU(WDS)/IUGG(IASC)/UNEP/UNESCO/ WMO, World Glacier Monitoring Service, Zürich, Switzerland.

Zemp, M., et al. (2015), Historically unprecedented global glacier decline in the early 21st century, J. Glaciol., 61, 745–762, doi:10.3189/ 2015JoG15J017.


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales