Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)
FR
EN
 


Fiche bibliographique

 

Réf. Carlson&al 2014 - A

Référence bibliographique
CARLSON BZ, GEORGES D, RABATEL A, RANDIN CF, RENAUD J, DELESTRADE A, ZIMMERMAN NE, CHOLER P & THUILLER W. Accounting for treeline shift, glacier retreat and primary succession in mountain plant distribution models. Diversity and Distributions, 20(12): 1379-1391 PDF

Abstract : Aim To incorporate changes in alpine land cover (tree line shift, glacier retreat and primary succession) into species distribution model (SDM) predictions for a selection of 31 high-elevation plants.

Location Chamonix Valley, French Alps.

Methods We fit linear mixed effects (LME) models to historical changes in forest and glacier cover and projected these trends forward to align with 21st century IPCC climate scenarios. We used a logistic function to model the probability of plant establishment in glacial forelands zones expected to become ice free between 2008 and 2051–2080. Habitat filtering consisted of intersecting land cover maps with climate-driven SDMs to refine habitat suitability predictions. SDM outputs for tree, heath and alpine species were compared based on whether habitat filtering during the prediction period was carried out using present-day (static) land cover, future (dynamic) land cover filters or no land cover filter (unfiltered). Species range change (SRC) was used to measure differences in habitat suitability predictions across methods.

Results LME predictions for 2021–2080 showed continued glacier retreat, tree line rise and primary succession in glacier forelands. SRC was highest in the unfiltered scenario (10%), intermediate in the dynamic scenario (15%) and lowest in the static scenario (31%). Tree species were the only group predicted to gain overall range by 2051–2080. Although alpine plants lost range in all three land cover scenarios, new habitat made available by glacier retreat in the dynamic land cover scenario buffered alpine plant range loss due to climate change.

Main conclusions We provide a framework for combining trajectories of land cover change with SDM predictions. Our pilot study shows that incorporating shifts in land cover improves habitat suitability predictions and leads to contrasting outcomes of future mountain plant distribution. Alpine plants in particular may lose less suitable habitat than standard SDMs predict due to 21st century glacier retreat.

Mots-clés
 Chamonix Valley – French Alps, habitat filtering, land cover dynamics, remote sensing, species range change.

Organismes / Contact

Authors / Auteurs :

Bradley Z. Carlson, Laboratoire d’Ecologie Alpine, UMR CNRSUJF 5553, University Grenoble Alpes, BP 53, 38041 Grenoble, France

Damien Georges, Laboratoire d’Ecologie Alpine, UMR CNRSUJF 5553, University Grenoble Alpes, BP 53, 38041 Grenoble, France

Antoine Rabatel, Laboratoire de Glaciologie et Géophysique de l’Environnement, UMR CNRS-UJF 5183, University Grenoble Alpes, BP 96, 38402 Grenoble, France

Christophe F. Randin, Botanisches Institut der Universitat Basel, Schonbeinstrasse 6, 4056 Basel, Switzerland & Swiss Federal Research Institute WSL, Z€urcherstr. 111, HL-E22, 8903 Birmensdorf, Switzerland

Julien Renaud, Laboratoire d’Ecologie Alpine, UMR CNRSUJF 5553, University Grenoble Alpes, BP 53, 38041 Grenoble, France

Anne Delestrade, Centre de Recherche sur les Ecosystemes d’Altitude & Laboratoire d’Ecologie Alpine, UMR CNRS-UJF 5553, University de Savoie

Niklaus E. Zimmermann, Swiss Federal Research Institute WSL, Zurcherstr. 111, HL-E22, 8903 Birmensdorf, Switzerland

Philippe Choler, Laboratoire d’Ecologie Alpine, UMR CNRSUJF 5553, University Grenoble Alpes, BP 53, 38041 Grenoble, France & Station Alpine J. Fourier, UMS CNRS-UJF 3370, University Grenoble Alpes

Wilfried Thuiller, Laboratoire d’Ecologie Alpine, UMR CNRSUJF 5553, University Grenoble Alpes, BP 53, 38041 Grenoble, France


(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
       

Pays / Zone
Massif / Secteur
Site(s) d'étude
Exposition
Altitude
Période(s) d'observation
France Alps Chamonix Valley   1000-4122m a.s.l.  

(1) - Modifications des paramètres atmosphériques
Reconstitutions
 
Observations

 

Modélisations
 
Hypothèses
 

Informations complémentaires (données utilisées, méthode, scénarios, etc.)



(2) - Effets du changement climatique sur le milieu naturel
Reconstitutions
 
Observations
 

 

Modélisations
 Historical land cover consistently reflected increasing forest cover as well as the diminishing extent of glaciers (Table 2). Glaciers covered 30% of the study area in 1850 as compared to 19% in 2008, whereas relative forest cover increased from 17% in 1952 to 26% of the study area in 2008.

Among the five resolutions that were tested, the 300-m-resolution FI model and 100-m-resolution GI model were retained to model forest and glacier extent over time.

Although glacier cover continued to decrease at a roughly constant rate during the prediction period, increase in forest cover between 2021–2050 and 2051–2080 slackened (<2 km2 gain) in comparison with observed historical changes.

For the eleven alpine plant species considered, the shift from positive SRC in 2021–2050 to net negative SRC in 2051–2080 when the dynamic land cover filter was used (Fig. 5b) aligns with the hypothesis that alpine plant range loss will occur gradually (Dullinger et al., 2012). Although we considered the ‘full dispersal’ scenario here, it has been shown that dispersal limitation causes alpine plants to lag behind climate shifts and to persist in marginal conditions before reaching a critical extinction threshold.

L’étude de l’évolution de l’occupation du sol met en évidence l’augmentation de la couverture forestière aussi bien que la diminution de la taille des glaciers. Les glaciers occupent ainsi 30% de notre zone d’étude en 1850 contre 19% en 2008. La couverture forestière relative augmente, quant à elle, de 17% en 1952 à 26% en 2008.

Parmis les 5 résolutions testées dans le cadre de notre étude, les modèles FI à 300m de résolution et GI à 100m de résolution ont été retenus pour modéliser l’évolution de la surface occupée par les glaciers et la forêt.

Bien que la surface occupée par les glaciers continue de diminuer fortement tout au long de notre période d’étude, l’augmentation de la surface occupée par la forêt entre 2021-2050 et 2051-2080 ralentit en comparaison aux tendances historiques observées.

Pour les 11 espèces alpines considérées, le changement entre le SRC positif sur la période 2021-2050 et le SRC négatif sur la période 2051-2080, dans le cadre du scénario dynamique d’occupation du sol, concorde avec l’hypothèse selon laquelle la perte de surface occupée par les plantes alpines va se faire de manière progressive. Bien que nous considérions ici le scénario de « répartition totale », il a été montré que les limites de répartition sont à l’origine, pour les plantes alpines, un retard par rapport aux changements climatiques et entraînent, par conséquent, une occupation du sol marginale, avant l’extinction totale.

Hypothèses
 

Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 

Nous avons ajusté le modèle LME aux changements historiques de la couverture forestière et de la couverture des glaciers puis, nous avons aligné les tendances obtenues avec les scénarios climatiques de l’IPCC pour le XXIème siècle. Nous avons ensuite utilisé une fonction logique pour modéliser la probabilité d’implantation de plantes dans les zones proglaciaires, à l’exception de celles déglacées entre 2008 et 2051-2080. Le filtre de l’habitat a consisté à croiser les cartes d’occupation du sol avec les paramètres climatiques des SDM pour définir la pertinence des prédictions d’évolution de l’habitat. Les résultats du SMD pour les arbres, la lande et les différentes espèces alpines ont été comparés en se basant sur les différents filtres utilisés (occupation du sol actuelle, future ou sans filtre d’occupation du sol) pour les prédictions. La SRC a ensuite été utilisée pour mesurer les différences de pertinence de prédictions en fonction des différentes méthodes.

We fit linear mixed effects (LME) models to historical changes in forest and glacier cover and projected these trends forward to align with 21st century IPCC climate scenarios. We used a logistic function to model the probability of plant establishment in glacial forelands zones expected to become ice free between 2008 and 2051–2080. Habitat filtering consisted of intersecting land cover maps with climate-driven SDMs to refine habitat suitability predictions. SDM outputs for tree, heath and alpine species were compared based on whether habitat filtering during the prediction period was carried out using present-day (static) land cover, future (dynamic) land cover filters or no land cover filter (unfiltered). Species range change (SRC) was used to measure differences in habitat suitability predictions across methods.

(3) - Effets du changement climatique sur l'aléa
Reconstitutions
 
Observations
 
Modélisations
 
Hypothèses
 

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)
 
 
 

(4) - Remarques générales
 

(5) - Syntèses et préconisations
 

Références citées :

Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232

Ameztegui, A., Brotons, L. & Coll, L. (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata) expansion in the Pyrenees. Global Ecology and Biogeography, 19, 632–641.

Anandhi, A., Frei, A., Pierson, D.C., Schneiderman, E.M., Zion, M.S., Lounsbury, D. & Matonse, A.H. (2011) Examination of change factor methodologies for climate change impact assessment. Water Resources Research, 47, W03501.

Batllori, E., Camarero, J.J., Ninot, J.M. & Gutierrez, E. (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata treeline ecotones. Implications and potential responses to climate warming. Global Ecology and Biogeography, 18, 460–472.

Billings, W.D. (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. BioScience, 23, 697–704.

Boggs, K., Klein, S.C., Grunblatt, J., Boucher, T., Koltun, B., Sturdy, M. & Streveler, G.P. (2010) Alpine and subalpine vegetation chronosequences following deglaciation in coastal Alaska. Arctic, Antarctic and Alpine Research, 42, 385–395.

Boulangeat, I., Philippe, P., Abdulhak, S., Douzet, R., Garraud, L., Lavergne, S., Lavorel, S., Van Es, J., Vittoz, P. & Thuiller, W. (2012) Improving plant functional groups for dynamic models of biodiversity: at the crossroads between functional and community ecology. Global Change Biology, 18, 3464–3475.

Boulangeat, I., Georges, D., Dentant, C., Bonet, R., Van Es, J., Abdulhak, S., Zimmermann, N.E. & Thuiller, W. (2014) Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area. Ecography, 37, 01–10.

Burga, C.A., Kr€usi, B., Egli, M., Wernli, M., Elsener, S., Ziefle, M., Fischer, T. & Mavris, C. (2010) Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): straight forward or chaotic? Flora, 205, 561–576.

Carlson, B.Z., Randin, C.F., Boulangeat, I., Lavergne, S., Thuiller, W. & Choler, P. (2013) Working toward integrated models of alpine plant distribution. Alpine Botany, 132, 41–53.

Carlson, B.Z., Renaud, J., Biron, P.E. & Choler, P. (2014) Long-term modelling of the forest grassland ecotone in the French Alps: implications for conservation and pasture management. Ecological Applications, 24, 1213–1225. doi:10.1890/13-0910.1.

Case, B.S. & Duncan, R.P. (2014) A novel framework for disentangling the scale-dependent influences of abiotic factors on alpine treeline position. Ecography, 37, 001–014.

Chapin, F.S., Walker, L.R., Fastie, C.L. & Sharman, L.C. (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs, 64, 149–175.

Connell, J.H. & Slatyer, R.O. (1977) Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist, 111, 1119– 1144

Dubuis, A., Giovanettina, S., Pellissier, L., Pottier, J., Vittoz, P. & Guisan, A. (2013) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. Journal of Vegetation Science, 24, 593–606.

Dullinger, S., Mang, T., Dirnb€ock, T., Ertle, S., Gattringer, A., Grabherr, G., Leitner, M. & H€ulber, K. (2011) Patch configuration affects alpine plant distribution. Ecography, 34, 576–587.

Dullinger, S., Gattringer, A., Thuiller, W. et al. (2012) Extinction debt of high-mountain plants under 21st century climate change. Nature Climate Change, 2, 619–622.

Elliott, G.P. (2011) Influences of 20th century warming at upper treeline contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Global Ecology and Biogeography, 20, 46–47.

Engler, R., Thuiller, W., Dullinger, S. et al. (2011) 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330–2341.

Fastie, C.L. (1995) Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology, 76, 1899–1916.

Gardent, M., Rabatel, A., Dedieu, J.P., Deline, P. & Schoeneich, P. (2012) Analysis of the glacier retreat in the French Alps since the 1960s based on the new glacier inventory. Geophysical Research Abstracts, 14, . EGU2012-8984-1, 9th EGU General Assembly, Wien, 22-27 April 2012.

Gehrig-Fasel, J., Guisan, A. & Zimmermann, N.E. (2007) Treeline shifts in the Swiss Alps: climate change or land abandonment? Journal of Vegetation Science, 18, 572–582.

Gottfried, M., Pauli, H. & Grabherr, G. (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Antarctic, Arctic and Alpine Research, 30, 207–231.

Gottfried, M., Pauli, H., Futschik, A. et al. (2012) Continentwide response of mountain vegetation to climate change. Nature Climate Change, 2, 111–115.

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.

Haeberli, W. & Beniston, M. (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio, 27, 258–265.

Harsch, M.A., Hulme, P.E., McGlone, M.S. & Duncan, R.P. (2009) Are treelines advancing? A global meta-analysis of treeline response to global warming. Ecology Letters, 12, 1040–1049.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

Huss, M., Jouvet, G., Farinotti, D. & Bauder, A. (2010) Future high-mountain hydrology: a new parameterization of glacier retreat. Hydrology & Earth System Sciences Discussions, 7, 345–387.

IPCC (2000) Special report on emission scenarios. Cambridge University Press, Cambridge, UK, 570 pp.

Jouvet, G., Huss, M., Blatter, H., Picasso, M. & Rappaz, J. (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. Journal of Computational Physics, 228, 6426–6439.

K€orner, C. (2007) Climate treelines: conventions, global patterns, causes. Erdkunde, 61, 316–324.

K€orner, C., Paulsen, J. & Spehn, E.M. (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alpine Botany, 121, 73–78.

Kullman, L. (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. Journal of Ecology, 90, 68–77.

Lauber, K. & Wagner, G. (2008) Flora Helvetica. Feddes Reppertorium, Bern.

Lischke, H., Zimmermann, N.E., Bolliger, J., Rickebusch, S. & L€offler, T.J. (2006) Treemig: a forest-landscape model for simulating spatial and temporal patterns from stand to landscape scale. Ecological Modelling, 199, 409–420.

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59–69.

Nilsson, M.C. & Wardle, D.A. (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3, 421–428.

Pauli, H., Gottfried, M. & Grabherr, G. (2003) Effects of climate change on the alpine and nival vegetation of the alps. Journal of Mountain Ecology, 7, 3–12.

Pellissier, L., Brathen, K.A., Pottier, J., Randin, C., Vittoz, P., Dubuis, A., Yoccoz, N.G., Torbjørn, A., Zimmermann, N.E. & Guisan, A. (2010) Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 33, 1004–1014.

Pinheiro, J.C. & Bates, D.M. (2000) Mixed effects models in S and S-PLUS. Springer-Verlag Inc., New York, NY. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. & the R Development Core Team (2012) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-103.

R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org

Rabatel, A., Dedieu, J.-P., Letreguilly, A. & Six, D. (2012) Remote sensing monitoring of the evolution of glacier surface area and equilibrium-line altitude in the French Alps, Proceedings of the 25th symposium of the International Association of Climatology, 5–8 September 2012, Grenoble, France.

Rabatel, A., Letreguilly, A., Dedieu, J.-P. & Eckert, N. (2013) Changes in glacier equilibrium-line altitude in the western Alps from 1984 to 2010: evaluation by remote sensing and modeling of the morpho-topographic and climate controls. The Cryosphere, 7, 1455–1471.

Randin, C., Engler, R., Normand, S., Zappa, M., Zimmermann, N.E., Pearman, P.B., Vittoz, P., Thuiller, W. & Guisan, A. (2009) Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15, 1557–1569.

Rouse, J.W. Jr, Hass, R.H., Deering, D.W., Schell, J.A. & Harlan, J.C. (1974) Monitoring the vernal advancements and retrogradation (green wave effect) of natural vegetation. NASA/GSFC, Final Report. Greenbelt, MD, 1 137.

Rydgren, K., Halvorsen, R., T€opper, J.P. & Njøs, J.M. (2014) Glacier foreland succession and the fading effect of terrain age. Journal of Vegetation Science. doi:10.1111/jvs.12184.

Samuelsson, P., Jones, C.G., Willen, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson, C., Kjellstr€om, E., Nikulin, G. & Wyser, K. (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A, 63, 4–23.

Sauvy, A. (2001) Chamonix d’un siecle a l’autre. Editions Arthaud, Paris.

Scherrer, D. & K€orner, C. (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38, 406– 416.

Thuiller, W., Lafourcade, B., Engler, R. & Araujo, M.B. (2009) BIOMOD – A platform for ensemble forecasting of species distributions. Ecography, 32, 369–373.

Zimmermann, N.E. & Kienast, F. (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science, 10, 469–482.

Zimmermann, N.E., Edwards, T.C., Moisen, G.G., Frescino, T.S. & Blackard, J.A. (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. Journal of Applied Ecology, 44, 10571067.


Europe

Alpine Space ClimChAlp ONERC
ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales