Pôle Alpin Risques Naturels (PARN) Alpes–Climat–Risques Avec le soutien de la Région Rhône-Alpes (2007-2014)

Fiche bibliographique


Réf. Alfieri & al. 2015 - A

Référence bibliographique
ALFIERI L., BUREK P., FEYEN L., FORZIERI G., (2015) Global warming increases the frequency of river floods in Europe, Hydrology and Earth System Sciences, 19, 2247-2260. DOI : 10.5194/hess-19-2247-2015

Abstract : EURO-CORDEX (Coordinated Downscaling Experiment over Europe), a new generation of downscaled climate projections, has become available for climate change impact studies in Europe. New opportunities arise in the investigation of potential effects of a warmer world on meteorological and hydrological extremes at regional scales. In this work, an ensemble of EURO-CORDEX RCP8.5 scenarios is used to drive a distributed hydrological model and assess the projected changes in flood hazard in Europe through the current century. Changes in magnitude and frequency of extreme streamflow events are investigated by statistical distribution fitting and peak over threshold analysis. A consistent method is proposed to evaluate the agreement of ensemble projections. Results indicate that the change in frequency of discharge extremes is likely to have a larger impact on the overall flood hazard as compared to the change in their magnitude. On average, in Europe, flood peaks with return periods above 100 years are projected to double in frequency within 3 decades.


Organismes / Contact

European Commission – Joint Research Centre, Ispra, Italy

(1) - Paramètre(s) atmosphérique(s) modifié(s)
(2) - Elément(s) du milieu impacté(s)
(3) - Type(s) d'aléa impacté(s)
(3) - Sous-type(s) d'aléa
Precipitation River river floods  

Pays / Zone
Massif / Secteur
Site(s) d'étude
Période(s) d'observation

(1) - Modifications des paramètres atmosphériques

Changes in precipitation :

Mean annual precipitation : prYear
Mean annual maximum daily precipitation : prMAX

The ensemble of climate projections agrees on up to a 30% reduction of prYear in southern European countries, particularly in the Iberian Peninsula, Greece and southern Italy. Conversely, an increasing trend is projected over north-eastern Europe, with the largest changes in Iceland and Scandinavia.



Informations complémentaires (données utilisées, méthode, scénarios, etc.)

(2) - Effets du changement climatique sur le milieu naturel


Changes in streamflow :

Mean of the average streamflow : Q

Changes in Q reproduce similar patterns as those of the mean annual precipitation in Fig. 4, with negative changes in southern Europe, positive in northern and eastern Europe, and uncertain behaviour in the western part of central Europe. In the considered study region, Q is projected to increase in 73% of the river network by 2080, while the overall mean relative change is 8 %.
Changes of QMAX and Q100 in the three future time slices have similar patterns. Although in the majority of the river network the projected changes have large uncertainty (CV>1), some significant trends are found, particularly in 2080, where in 38 (for QMAX) and 27% (for Q100) of the river network the ensemble of climate projections points towards a clear change from the baseline.

Frequency of extreme events :

In the future scenarios, changes are particularly consistent in the north-eastern Europe, where a reduction of the frequency of extreme events is clearly visible since the first time slice. In 2080, the pattern of projected relative changes looks similar to that of QMAX in Fig. 6, though with a wider range, where 50% of grid points exhibit changes in absolute value larger than 35 %.


Results of this work indicate strong model agreement in the projected change of average inflow and runoff in the European river network. By the end of the century, both mean annual precipitation and average discharge are projected to decrease in southern Europe and to increase in north-eastern Europe, while in central Europe the ensemble of projections does not agree on a specific trend. Projected changes in extreme values are on average less significant and show different spatial patterns for precipitation and discharge.
As a result, we found a reduction of peak discharges in southern Spain, Scandinavia and Baltic countries, while a large portion of central Europe including the British Isles are likely to experience a progressive increase in the magnitude and frequency of discharge peaks.
Interestingly, the expected annual frequency of events with peak discharge above the 100- year return period is projected to rise significantly in most of the considered European countries.
The projected figures are unsettling, showing significant increase in the frequency of extreme events larger than 100% in 21 out of 37 European countries since the first time slice (2006–2035), and a further deterioration in the subsequent future. These findings relate to a range of event magnitude mostly above the average protection level of European rivers, hence they have serious implications on the associated flood risk and the potential impact on business and society.


Sensibilité du milieu à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)


(3) - Effets du changement climatique sur l'aléa

Paramètre de l'aléa
Sensibilité du paramètres de l'aléa à des paramètres climatiques
Informations complémentaires (données utilisées, méthode, scénarios, etc.)

(4) - Remarques générales

(5) - Syntèses et préconisations

Références citées :

Alfieri, L., Thielen, J., and Pappenberger, F.: Ensemble hydrometeorological simulation for flash flood early detection in southern Switzerland, J. Hydrol., 424–425, 143–153, doi:10.1016/j.jhydrol.2011.12.038, 2012.

Alfieri, L., Pappenberger, F., and Wetterhall, F.: The extreme runoff index for flood early warning in Europe, Nat. Hazards Earth Syst. Sci., 14, 1505–1515, doi:10.5194/nhess-14-1505-2014, 2014a.

Alfieri, L., Salamon, P., Bianchi, A., Neal, J., Bates, P., and Feyen, L.: Advances in pan-European flood hazard mapping, Hydrol. Process., 28, 4067–4077, doi:10.1002/hyp.9947, 2014b.

Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: Results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, doi:10.5194/hess-17-2967-2013, 2013.

Andersen, T. K. and Marshall Shepherd, J.: Floods in a changing climate, Geogr. Compass, 7, 95–115, doi:10.1111/gec3.12025, 2013.

Arnell, N. W. and Gosling, S. N.: The impacts of climate change on river flood risk at the global scale, Climatic Change, 1–15, doi:10.1007/s10584-014-1084-5, 2014.

Betts, R. A., Collins, M., Hemming, D. L., Jones, C. D., Lowe, J. A., and Sanderson, M. G.: When could global warming reach 4 C?, Philos. T. Roy. Soc. A, 369, 67–84, 2011.

Burek, P., van der Knijff, J., and Ntegeka, V.: LISVAP, Evaporation Pre-Processor for the LISFLOOD Water Balance and Flood Simulation Model – Revised User Manual, EUR 26167 EN, Joint Research Centre – Institute for Environment and Sustainability, doi:10.2788/2498, 36 pp., 2013a.

Burek, P., Knijff van der, J., and Roo de, A.: LISFLOOD, distributed water balance and flood simulation model revised user manual 2013, Publications Office, Luxembourg, available at: http: //dx.publications.europa.eu/10.2788/24719 (last access: 12 December 2014), 2013b.

Carpenter, T. M., Sperfslage, J. A., Georgakakos, K. P., Sweeney, T., and Fread, D. L.: National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems, J. Hydrol., 224, 21–44, 1999.

Christensen, J. H., Carter, T. R., Rummukainen, M., and Amanatidis, G.: Evaluating the performance and utility of regional climate models: The PRUDENCE project, Climatic Change, 81, 1– 6, doi:10.1007/s10584-006-9211-6, 2007.

Dankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations, J. Geophys. Res.-Atmos., 113, D19105, doi:10.1029/2007JD009719, 2008.

Dankers, R. and Feyen, L.: Flood hazard in Europe in an ensemble of regional climate scenarios, J. Geophys. Res.-Atmos., 114, D16108, doi:10.1029/2008JD011523, 2009.

Dankers, R., Arnell, N. W., Clark, D. B., Falloon, P. D., Fekete, B. M., Gosling, S. N., Heinke, J., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., and Wisser, D.: First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble, P. Natl. Acad. Sci. USA, 111, 3257–3261, doi:10.1073/pnas.1302078110, 2013.

De Roo, A., Odijk, M., Schmuck, G., Koster, E., and Lucieer, A.: Assessing the effects of land use changes on floods in the meuse and oder catchment, Phys. Chem. Earth B, 26, 593–599, 2001.

Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., and Beven, K. J.: Flood-plain mapping: A critical discussion of deterministic and probabilistic approaches, Hydrolog. Sci. J., 55, 364–376, doi:10.1080/02626661003683389, 2010.

Diomede, T., Marsigli, C., Montani, A., Nerozzi, F., and Paccagnella, T.: Calibration of Limited-Area Ensemble Precipitation Forecasts for Hydrological Predictions, Mon. Weather Rev., 142, 2176–2197, doi:10.1175/MWR-D-13-00071.1, 2014.

Ehret, U., Zehe, E., Wulfmeyer, V., Warrach-Sagi, K., and Liebert, J.: HESS Opinions “Should we apply bias correction to global and regional climate model data?”, Hydrol. Earth Syst. Sci., 16, 3391–3404, doi:10.5194/hess-16-3391-2012, 2012.

Feng, S., Hu, Q., Huang, W., Ho, C.-H., Li, R., and Tang, Z.: Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations, Global Planet. Change, 112, 41–52, doi:10.1016/j.gloplacha.2013.11.002, 2014.

Field, C. B., Barros, V. R., Mach, K. J., Mastrandrea, M. D., van Aalst, M., Adger, W. N., Arent, D. J., Barnett, J., Betts, R., Bilir, T. E., Birkmann, J., Carmin, J., Chadee, D. D., Challinor, A. J., Chatterjee, M., Cramer, W., Davidson, D. J., Estrada, Y. O., Gattuso, J.-P., Hijioka, Y., Hoegh-Guldberg, O., Huang, H. Q., Insarov, G. E., Jones, R. N., Kovats, R. S., Romero-Lankao, P., Larsen, J. N., Losada, I. J., Marengo, J. A., McLean, R. F., Mearns, L. O., Mechler, R., Morton, J. F., Niang, I., Oki, T., Olwoch, J. M., Opondo, M., Poloczanska, E. S., Pörtner, H.-O., Redsteer, M. H., Reisinger, A., Revi, A., Schmidt, D. N., Shaw, M. R., Solecki, W., Stone, D. A., Stone, J. M. R., Strzepek, K. M., Suarez, A. G., Tschakert, P., Valentini, R., Vicuña, S., Villamizar, A., Vincent, K. E., Warren, R., White, L. L., Wilbanks, T. J., Wong, P. P., and Yohe, G. W.: Technical summary, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 35–94, 2014.

Fundel, F., Walser, A., Liniger, M. A., and Appenzeller, C.: Calibrated precipitation forecasts for a limited-area ensemble forecast system using reforecasts, Mon.Weather Rev., 138, 176–189, 2010.

Hall, J. W., Sayers, P. B., and Dawson, R. J.: National-scale assessment of current and future flood risk in England and Wales, Nat. Hazards, 36, 147–164, 2005.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, doi:10.1038/nclimate1911, 2013.

Hosking, J. R. M.: L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics, J. R. Stat. Soc. Ser. B, 52, 105–124, 1990.

Huang, S., Krysanova, V., and Hattermann, F. F.: Does bias correction increase reliability of flood projections under climate change? A case study of large rivers in Germany, Int. J. Climatol., 34, 3780–3800, doi:10.1002/joc.3945, 2014.

IPCC: Summary for Policymakers, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, D. M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.

IPCC: Summary for Policymakers, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Meijgaard, E. van, Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EUROCORDEX: new high-resolution climate change projections for European impact research, Reg. Environ. Change, 14, 563–578, doi:10.1007/s10113-013-0499-2, 2014.

Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C. J. H., Mechler, R., Botzen, W. J. W., Bouwer, L. M., Pflug, G., Rojas, R., and Ward, P. J.: Increasing stress on disaster-risk finance due to large floods, Nat. Clim. Change, 4, 264–268, doi:10.1038/nclimate2124, 2014.

Kamari, J., Alcamo, J., Barlund, I., Duel, H., Farquharson, F. A. K., Florke, M., Fry, M., Houghton-Carr, H. A., Kabat, P., Kaljonen, M., Kok, K., Meijer, K. S., Rekolainen, S., Sendzimir, J., Varjopuro, R., and Villars, N.: Envisioning the future of water in Europe – the SCENES project, E-WAter, 1–28, 2008.

Kendall, M. G.: Rank Correlation Methods, 4th Edn., Charles Griffin, London, 1975.

Knutti, R. and Sedláˇcek, J.: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change, 3, 369– 373, doi:10.1038/nclimate1716, 2013.

Koirala, S., Hirabayashi, Y., Mahendran, R., and Kanae, S.: Global assessment of agreement among streamflow projections using CMIP5 model outputs, Environ. Res. Lett., 9, 064017, doi:10.1088/1748-9326/9/6/064017, 2014.

Kundzewicz, Z. W., Radziejewski, M., and Pinskwar, I.: Precipitation extremes in the changing climate of Europe, Clim. Res., 31, 51–58, doi:10.3354/cr031051, 2006.

Mallakpour, I. and Villarini, G.: The changing nature of flooding across the central United States, Nat. Clim. Change, 5, 250–254, doi:10.1038/nclimate2516, 2015.

Mann, H. B.: Non-parametric tests against trend, Econometrica, 13, 163–171, 1945.

McCarthy, J. J.: Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, available at: http: //books.google.it/books?hl=it&lr=&id=QSoJDcRvRXQC&oi= fnd&pgPP7&dq=third+assessment+report+ipcc&ots= dT1spJd5eV&sig=dhJsDN-iMjM8rHTTtny6mcvkRVk (last access: 20 November 2014), 2001.

Merz, R., Blöschl, G., and Humer, G.: National flood discharge mapping in Austria, Nat. Hazards, 46, 53–72, doi:10.1007/s11069-007-9181-7, 2008.

Muerth, M. J., Gauvin St-Denis, B., Ricard, S., Velázquez, J. A., Schmid, J., Minville, M., Caya, D., Chaumont, D., Ludwig, R., and Turcotte, R.: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff, Hydrol. Earth Syst. Sci., 17, 1189–1204, doi:10.5194/hess-17- 1189-2013, 2013.

Ntegeka, V., Salamon, P., Gomes, G., Sint, H., Lorini, V., Thielen, J., and Zambrano-Bigiarini, M.: EFAS-Meteo: A European daily high-resolution gridded meteorological data set for 1990–2011, available at: http://publicationsjrceceuropa. ourtownypd.com/repository/handle/111111111/30589 (last access: 3 June 2014), 2013.

Perez, J., Menendez, M., Mendez, F. J., and Losada, I. J.: Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region, Clim. Dynam., 43, 2663– 2680, doi:10.1007/s00382-014-2078-8, 2014.

Rojas, R., Feyen, L., Bianchi, A., and Dosio, A.: Assessment of future flood hazard in Europe using a large ensemble of biascorrected regional climate simulations, J. Geophys. Res.-Atmos., 117, D17109, doi:10.1029/2012JD017461, 2012

Rojas, R., Feyen, L., and Watkiss, P.: Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation, Global Environ. Change, 23, 1737–1751, doi:10.1016/j.gloenvcha.2013.08.006, 2013.

Sperna Weiland, F. C., Van Beek, L. P. H., Weerts, A. H., and Bierkens, M. F. P.: Extracting information from an ensemble of GCMs to reliably assess future global runoff change, J. Hydrol., 412–413, 66–75, doi:10.1016/j.jhydrol.2011.03.047, 2012.

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, B. Am. Meteorol. Tebaldi, C., Arblaster, J. M., and Knutti, R.: Mapping model agreement on future climate projections, Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863, 2011.

Themeßl, M. J., Gobiet, A., and Heinrich, G.: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal, Climatic Change, 112, 449–468, doi:10.1007/s10584-011-0224-4, 2012.

Thielen, J., Bartholmes, J., Ramos, M.-H., and de Roo, A.: The European Flood Alert System – Part 1: Concept and development, Hydrol. Earth Syst. Sci., 13, 125–140, doi:10.5194/hess-13-125- 2009, 2009.

Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., and De Roo, A.: Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin, J. Hydrol., 499, 324–338, doi:10.1016/j.jhydrol.2013.07.012, 2013.

Thirel, G., Notarnicola, C., Kalas, M., Zebisch, M., Schellenberger, T., Tetzlaff, A., Duguay, M., Mölg, N., Burek, P., and de Roo, A.: Assessing the quality of a real-time Snow Cover Area product for hydrological applications, Remote Sens. Environ., 127, 271–287, doi:10.1016/j.rse.2012.09.006, 2012.

Van der Knijff, J. M., Younis, J., and de Roo, A. P. J.: LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation, Int. J. Geogr. Inf. Sci., 24, 189–212, 2010.

Van der Linden, P. and Mitchell, J. F. B. (Eds.): ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project, Met Off. Hadley Cent., Exeter, UK, 1–160, 2009.

Wanders, N., Bierkens, M. F. P., de Jong, S. M., de Roo, A., and Karssenberg, D.: The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models, Water Resour. Res., 50, 6874–6891, doi:10.1002/2013WR014639, 2014.

WMO: Guide to Hydrological Practices, Vol. 2, 6th Edn., Geneva, Switzerland, 2009. Younis, J., Anquetin, S., and Thielen, J.: The benefit of highresolution operational weather forecasts for flash flood warning, Hydrol. Earth Syst. Sci., 12, 1039–1051, doi:10.5194/hess-12- 1039-2008, 2008.

Zambrano-Bigiarini, M. and Rojas, R.: hydroPSO: Particle Swarm Optimisation, with focus on Environmental Models, available at: http://cran.r-project.org/web/packages/hydroPSO/index.html, last access: 28 May 2014.


Alpine Space ClimChAlp ONERC
Rhône-Alpes PARN

Portail Alpes-Climat-Risques   |   PARN 2007–2017   |  
Mentions légales